185 research outputs found

    On Affine Logic and {\L}ukasiewicz Logic

    Full text link
    The multi-valued logic of {\L}ukasiewicz is a substructural logic that has been widely studied and has many interesting properties. It is classical, in the sense that it admits the axiom schema of double negation, [DNE]. However, our understanding of {\L}ukasiewicz logic can be improved by separating its classical and intuitionistic aspects. The intuitionistic aspect of {\L}ukasiewicz logic is captured in an axiom schema, [CWC], which asserts the commutativity of a weak form of conjunction. This is equivalent to a very restricted form of contraction. We show how {\L}ukasiewicz Logic can be viewed both as an extension of classical affine logic with [CWC], or as an extension of what we call \emph{intuitionistic} {\L}ukasiewicz logic with [DNE], intuitionistic {\L}ukasiewicz logic being the extension of intuitionistic affine logic by the schema [CWC]. At first glance, intuitionistic affine logic seems very weak, but, in fact, [CWC] is surprisingly powerful, implying results such as intuitionistic analogues of De Morgan's laws. However the proofs can be very intricate. We present these results using derived connectives to clarify and motivate the proofs and give several applications. We give an analysis of the applicability to these logics of the well-known methods that use negation to translate classical logic into intuitionistic logic. The usual proofs of correctness for these translations make much use of contraction. Nonetheless, we show that all the usual negative translations are already correct for intuitionistic {\L}ukasiewicz logic, where only the limited amount of contraction given by [CWC] is allowed. This is in contrast with affine logic for which we show, by appeal to results on semantics proved in a companion paper, that both the Gentzen and the Glivenko translations fail.Comment: 28 page

    Some new results on decidability for elementary algebra and geometry

    Get PDF
    We carry out a systematic study of decidability for theories of (a) real vector spaces, inner product spaces, and Hilbert spaces and (b) normed spaces, Banach spaces and metric spaces, all formalised using a 2-sorted first-order language. The theories for list (a) turn out to be decidable while the theories for list (b) are not even arithmetical: the theory of 2-dimensional Banach spaces, for example, has the same many-one degree as the set of truths of second-order arithmetic. We find that the purely universal and purely existential fragments of the theory of normed spaces are decidable, as is the AE fragment of the theory of metric spaces. These results are sharp of their type: reductions of Hilbert's 10th problem show that the EA fragments for metric and normed spaces and the AE fragment for normed spaces are all undecidable.Comment: 79 pages, 9 figures. v2: Numerous minor improvements; neater proofs of Theorems 8 and 29; v3: fixed subscripts in proof of Lemma 3
    • …
    corecore