7 research outputs found

    Genetic diversity and population structure of Epichloë fungal pathogens of plants in natural ecosystems

    Get PDF
    Understanding the population genetic processes driving the evolution of plant pathogens is of central interest to plant pathologists and evolutionary biologists alike. However, most studies focus on host-pathogen associations in agricultural systems of high genetic and environmental homogeneity and less is known about the genetic structure of pathogen populations infecting wild plants in natural ecosystems. We performed parallel population sampling of two pathogenic Epichloë species occurring sympatrically on different host grasses in natural and seminatural grasslands in Europe: E. typhina infecting Dactylis glomerata and E. clarkii infecting Holcus lanatus. We sequenced 422 haploid isolates and generated genome-wide SNP datasets to investigate genetic diversity and population structure. In both species geographically separated populations formed genetically distinct groups, however, population separation was less distinct in E. typhina compared to E. clarkii. The patterns of among population admixture also differed between species across the same geographic range: we found higher levels of population genetic differentiation and a stronger effect of isolation by distance in E. clarkii compared to E. typhina, consistent with lower levels of gene flow in the former. This pattern may be explained by the different dispersal abilities of the two pathogens and is expected to be influenced by the genetic structure of host populations. In addition, genetic diversity was higher in E. typhina populations compared to E. clarkii, indicative of higher effective population size in E. typhina. These results suggest that the effect of genetic drift and the efficacy of selection may differ in the two species. Our study provides evidence of how ecologically similar species occupying the same geographical space can experience different evolutionary contexts, which could influence local adaptation and co-evolutionary dynamics of these fungal pathogens

    Genetic diversity and population structure of Epichloe fungal pathogens of plants in natural ecosystems

    No full text
    Understanding the population genetic processes driving the evolution of plant pathogens is of central interest to plant pathologists and evolutionary biologists alike. However, most studies focus on host-pathogen associations in agricultural systems of high genetic and environmental homogeneity and less is known about the genetic structure of pathogen populations infecting wild plants in natural ecosystems. We performed parallel population sampling of two pathogenic Epichloe species occurring sympatrically on different host grasses in natural and seminatural grasslands in Europe: E. typhina infecting Dactylis glomerata and E. clarkii infecting Holcus lanatus. We sequenced 422 haploid isolates and generated genome-wide SNP datasets to investigate genetic diversity and population structure. In both species geographically separated populations formed genetically distinct groups, however, population separation was less distinct in E. typhina compared to E. clarkii. The patterns of among population admixture also differed between species across the same geographic range: we found higher levels of population genetic differentiation and a stronger effect of isolation by distance in E. clarkii compared to E. typhina, consistent with lower levels of gene flow in the former. This pattern may be explained by the different dispersal abilities of the two pathogens and is expected to be influenced by the genetic structure of host populations. In addition, genetic diversity was higher in E. typhina populations compared to E. clarkii, indicative of higher effective population size in E. typhina. These results suggest that the effect of genetic drift and the efficacy of selection may differ in the two species. Our study provides evidence of how ecologically similar species occupying the same geographical space can experience different evolutionary contexts, which could influence local adaptation and co-evolutionary dynamics of these fungal pathogens.ISSN:2296-701

    Two-speed genomes of Epichloe fungal pathogens show contrasting signatures of selection between species and across populations

    No full text
    Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.ISSN:0962-1083ISSN:1365-294

    Chromosome-level genomes provide insights into genome evolution, organization and size in Epichloe fungi

    No full text
    Epichloe fungi are endophytes of cool season grasses, both wild species and commercial cultivars, where they may exhibit mutualistic or pathogenic lifestyles. The Epichloe-grass symbiosis is of great interest to agricultural research for the fungal bioprotective properties conferred to host grasses but also serves as an ideal system to study the evolution of fungal plant-pathogens in natural environments. Here, we assembled and annotated gapless chromosome-level genomes of two pathogenic Epichloe sibling species. Both genomes have a bipartite genome organization, with blocks of highly syntenic gene-rich regions separated by blocks of AT-rich DNA. The AT-rich regions show an extensive signature of RIP (repeat-induced point mutation) and the expansion of this compartment accounts for the large difference in genome size between the two species. This study reveals how the rapid evolution of repeat structure can drive divergence between closely related taxa and highlights the evolutionary role of dynamic compartments in fungal genomes

    Telomere-to-Telomere Genome Sequences across a Single Genus Reveal Highly Variable Chromosome Rearrangement Rates but Absolute Stasis of Chromosome Number

    No full text
    Genome rearrangements in filamentous fungi are prevalent but little is known about the modalities of their evolution, in part because few complete genomes are available within a single genus. To address this, we have generated and compared 15 complete telomere-to-telomere genomes across the phylogeny of a single genus of filamentous fungi, Epichloë. We find that the strik-ing distinction between gene-rich and repeat-rich regions previously reported for isolated species is ubiquitous across the Epichloë genus. We built a species phylogeny from single-copy gene orthologs to provide a comparative framing to study chromosome composition and structural change through evolutionary time. All Epichloë genomes have exactly seven nuclear chromosomes, but despite this conserved ploidy, analyses reveal low synteny and substantial rearrangement of gene content across the genus. These rearrangements are highly lineage-dependent, with most oc-curring over short evolutionary distances, with long periods of structural stasis. Quantification of chromosomal rearrangements shows they are uncorrelated with numbers of substitutions and evolutionary distances, suggesting that different modes of evolution are acting to create nucleotide and chromosome-scale changes.ISSN:2309-608
    corecore