10 research outputs found
Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested
The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5–50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5–10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms
Lobate impact melt flows within the extended ejecta blanket of Pierazzo crater
Impact melt flows are observed within the continuous and discontinuous ejecta blanket of the 9 km lunar crater Pierazzo, from the crater rim to more than 40 km away from the center of the crater. Our mapping, fractal analysis, and thermal modeling suggest that melt can be emplaced ballistically and, upon landing, can become separated from solid ejecta to form the observed flow features. Our analysis is based on the identification of established melt morphology for these in-ejecta flows and supported by fractal analysis and thermal modeling. We computed the fractal dimension for the flow boundaries and found values of D = 1.05–1.17. These are consistent with terrestrial basaltic lava flows (D = 1.06–1.2) and established lunar impact melt flows (D = 1.06–1.18), but inconsistent with lunar dry granular flows (D = 1.31–1.34). Melt flows within discontinuous ejecta deposits are noted within just 1.5% of the mapping area, suggesting that the surface expression of impact melt in the extended ejecta around craters of this size is rare, most likely due to the efficient mixing of melts with solid ejecta and local target rocks. However, if the ejected fragments (both, molten and solid) are large enough, segregation of melt and its consequent flow is possible. As most of the flows mapped in this work occur on crater-facing slopes, the development of defined melt flows within ejecta deposits might be facilitated by high crater-facing topography restricting the flow of ejecta soon after it makes ground contact, limiting the quenching of molten ejecta through turbulent mixing with solid debris. Our study confirms the idea that impact melt can travel far beyond the continuous ejecta blanket, adding to the lunar regolith over an extensive area
Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets
Bacterial spores (Bacillus subtilis), cyanobacteria (Chroococcidiopsis sp.), and lichen (Xanthoria elegans) embedded in martian analogue rock (gabbro) were exposed to shock pressures between 5 and 50 GPa which is the range of pressures observed in martian meteorites. The survival of Bacillus subtilis and Xanthoria elegans up to 45 GPa and of Chroococcidiopsis sp. up to 10 GPa supports the possibility of transfer of life inside meteoroids between Mars and Earth and it implies the potential for the transfer of life from any Mars-like planet to other habitable planets in the same stellar system
Shock experiments in support of the Lithopanspermia theory: The influence of host rock composition, temperature, and shock pressure on the survival rate of endolithic and epilithic microorganisms
Shock recovery experiments were performed with an explosive set-up in which
three types of microorganisms embedded in various types of host rocks were exposed to
strong shock waves with pressure pulse lengths of lower than 0.5 μs: spores of the
bacterium Bacillus subtilis, Xanthoria elegans lichens, and cells of the cyanobacterium
Chroococcidiopsis sp. 029. In these experiments, three fundamental parameters were
systematically varied (1) shock pressures ranging from 5 to 50 GPa, (2) preshock ambient
temperature of 293, 233 and 193 K, and (3) the type of host rock, including nonporous
igneous rocks (gabbro and dunite as analogs for the Martian shergottites and chassignites,
respectively), porous sandstone, rock salt (halite), and a clay-rich mineral mixture as
porous analogs for dry and water-saturated Martian regolith. The results show that the
three parameters have a strong influence on the survival rates of the microorganisms.
The most favorable conditions for the impact ejection from Mars for microorganisms
would be (1) low porosity host rocks, (2) pressures <10–20 GPa, and (3) low ambient
temperature of target rocks during impact. All tested microorganisms were capable of
surviving to a certain extent impact ejection in different geological materials under distinct
conditions
Discrimination between Complete versus Non-Complete Pathologic Response to Neoadjuvant Therapy Using Ultrasensitive Mutation Analysis: A Proof-of-Concept Study in <i>BRCA1</i>-Driven Breast Cancer Patients
Neoadjuvant chemotherapy (NACT) for breast cancer (BC) often results in pathologic complete response (pCR), i.e., the complete elimination of visible cancer cells. It is unclear whether the use of ultrasensitive genetic methods may still detect residual BC cells in complete responders. Breast carcinomas arising in BRCA1 mutation carriers almost always carry alterations of the TP53 gene thus providing an opportunity to address this question. The analysis of consecutive BC patients treated by NACT revealed a higher pCR rate in BRCA1-driven vs. BRCA1-wildtype BCs (13/24 (54%) vs. 29/192 (15%), p BRCA1 mutation carriers were available for the study. While TP53 mutation was identified in all chemonaive tumors, droplet digital PCR (ddPCR) analysis of the post-NACT tumor bed revealed the persistence of this alteration in all seven pCR-non-responders but in none of five pCR responders. Eleven patients provided to the study post-NACT tissue samples only; next-generation sequencing (NGS) analysis revealed mutated TP53 copies in all six cases without pCR but in none of five instances of pCR. In total, TP53 mutation was present in post-NACT tissues in all 13 cases without pCR, but in none of 10 patients with pCR (p < 0.000001). Therefore, the lack of visible tumor cells in the post-NACT tumor bed is indeed a reliable indicator of the complete elimination of transformed clones. Failure of ultrasensitive methods to identify patients with minimal residual disease among pCR responders suggests that the result of NACT is a categorical rather than continuous variable, where some patients are destined to be cured while others ultimately fail to experience tumor eradication
Quantifying the release of climate-active gases by large meteorite impacts with a case study of Chicxulub.
9 pagesInternational audiencePotentially hazardous asteroids and comets have hit Earth throughout its history, with catastrophic consequences in the case of the Chicxulub impact. Here we reexamine one of the mechanisms that allow an impact to have a global effect—the release of climate-active gases from sedimentary rocks. We use the SOVA hydrocode and model ejected materials for a sufficient time after impact to quantify the volume of gases that reach high enough altitudes (> 25 km) to have global consequences. We vary impact angle, sediment thickness and porosity, water depth, and shock pressure for devolatilization and present the results in a dimensionless form so that the released gases can be estimated for any impact into a sedimentary target. Using new constraints on the Chicxulub impact angle and target composition, we estimate that 325 ± 130 Gt of sulfur and 425 ± 160 Gt CO2 were ejected and produced severe changes to the global climate
The Habitat of the Nascent Chicxulub Crater
An expanded sedimentary section provides an opportunity to elucidate conditions in the nascent Chicxulub crater during the hours to millennia after the Cretaceous‐Paleogene (K‐Pg) boundary impact. The sediments were deposited by tsunami followed by seiche waves as energy in the crater declined, culminating in a thin hemipelagic marlstone unit that contains atmospheric fallout. Seiche deposits are predominantly composed of calcite formed by decarbonation of the target limestone during impact followed by carbonation in the water column. Temperatures recorded by clumped isotopes of these carbonates are in excess of 70°C, with heat likely derived from the central impact melt pool. Yet, despite the turbidity and heat, waters within the nascent crater basin soon became a viable habitat for a remarkably diverse cross section of the food chain. The earliest seiche layers deposited with days or weeks of the impact contain earliest Danian nannoplankton and dinocyst survivors. The hemipelagic marlstone representing the subsequent years to a few millennia contains a nearly monogeneric calcareous dinoflagellate resting cyst assemblage suggesting deteriorating environmental conditions, with one interpretation involving low light levels in the impact aftermath. At the same horizon, microbial fossils indicate a thriving bacterial community and unique phosphatic fossils including appendages of pelagic crustaceans, coprolites andbacteria‐tunneled fish bone, suggesting that this rapid recovery of the base of the food chain may have supported the survival of larger, higher trophic‐level organisms. The extraordinarily diverse fossil assemblage indicates that the crater was a unique habitat in the immediate impact aftermath, possibly as aresult of heat and nutrients supplied by hydrothermal activity