6 research outputs found

    Galileo E5 AltBOC Signals: Application for Single-Frequency Total Electron Content Estimations

    Full text link
    Global navigation satellite system signals are known to be an efficient tool to monitor the Earth ionosphere. We suggest Galileo E5 AltBOC phase and pseudorange observables—a single-frequency combination—to estimate the ionospheric total electron content (TEC). We performed a one-month campaign in September 2020 to compare the noise level for different TEC estimations based on single-frequency and dual-frequency data. Unlike GPS, GLONASS, or Galileo E5a and E5b single-frequency TEC estimations (involving signals with binary and quadrature phase-shift keying, such as BPSK and QPSK, or binary offset carrier (BOC) modulation), an extra wideband Galileo E5 AltBOC signal provided the smallest noise level, comparable to that of dual-frequency GPS. For elevation higher than 60 degrees, the 100 s root-mean-square (RMS) of TEC, an estimated TEC noise proxy, was as follows for different signals: ~0.05 TECU for Galileo E5 AltBOC, 0.09 TECU for GPS L5, ~0.1TECU for Galileo E5a/E5b BPSK, and 0.85 TECU for Galileo E1 CBOC. Dual-frequency phase combinations provided RMS values of 0.03 TECU for Galileo E1/E5, 0.03 and 0.07 TECU for GPS L1/L2 and L1/L5. At low elevations, E5 AltBOC provided at least twice less single-frequency TEC noise as compared with data obtained from E5a or E5b. The short dataset of our study could limit the obtained estimates; however, we expect that the AltBOC single-frequency TEC will still surpass the BPSK analogue in noise parameters when the solar cycle evolves and geomagnetic activity increases. Therefore, AltBOC signals could advance geoscience

    Statistical Analysis and Interpretation of High-, Mid- and Low-Latitude Responses in Regional Electron Content to Geomagnetic Storms

    Full text link
    Geomagnetic storm is one of the most powerful factors affecting the state of the Earth’s ionosphere. Revealing the significance of formation mechanisms for ionospheric storms is still an unresolved problem. The purpose of the study is to obtain a statistical pattern of the response in regional electron content to geomagnetic storms on a global scale to interpret the results using the upper atmosphere model (the Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere), to make the detailed comparison with the thermospheric storm concept, and to compare the obtained pattern with results from previous statistical studies. The regional electron content is calculated based on the global ionospheric maps data, which allows us to cover the midlatitude and high-latitude zones of both hemispheres, as well as the equatorial zone. Most of the obtained statistical pattern agrees with the thermospheric storm concept and with the previous statistical studies: ionospheric responses at ionospheric storm main phases including their seasonal dependences for the high- and midlatitudes and some features of ionospheric responses at recovery phases. However, some of the statistical patterns are inconsistent with the thermospheric storm concept or contradicts the previous statistical studies: negative midlatitude ionospheric responses at recovery phases in the local winter, the domination of the spring response in the equatorial zone, seasonal features of the positive after-effects, the interhemispheric asymmetry of ionospheric responses, and the prestorm enhancement. We obtained that the contribution of electric field to the interpretation of the zonal and diurnal averaged storm-time regional electron content (REC) disturbances is insignificant. The positive after-storm effects at different latitudes are caused by n(O) disturbances

    Can we detect X/M/C-class solar flares from global navigation satellite system data?

    Full text link
    Based on the total electron content (TEC) data from global navigation satellite system (GNSS), we analyzed 224 classified solar flares (SFs) occurred in 2014–2017. We suggest an algorithm for SF automatic detection. The algorithm is based on analysis of GNSS-TEC variation derivative averaged over all the sunlit ionospheric pierce points. The algorithm enabled to confidently detect all X-class SFs, 81% events, when the X-ray peak was within 10–100 μW/m2, and 32%, when the X-ray peak was within 1–10 μW/m2. The false positive error was 25%. 2000 MSC: 86-05, Keywords: GNSS, Ionosphere, Solar flares, Detection, Total electron conten

    Longitudinal variation in the ionosphere-plasmasphere system at the minimum of solar and geomagnetic activity: Investigation of temporal and latitudinal dependences

    Full text link
    International audienceWe use the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) as the first-principle calculation of the physical system state, the quick-run ionospheric electron density model (NeQuick) as the climatology background, and the International Reference Ionosphere-based Real-Time Assimilative Model for a global view of the ionospheric weather during a quiet period of the December 2009 solstice. The model computations are compared to the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation profiles, CHAMP and Gravity Recovery and Climate Experiment in situ densities, and GPS total electron content (TEC). It is shown that the plasma density in the ionosphere is generally larger in the American/Atlantic longitudinal sector at any local time. The high-latitude density enhancements are visible in the GSM TIP output at different altitudes but are not reproduced by the NeQuick empirical model. Given that observational data confirm an existence of the high-latitude areas where ionospheric densities are elevated in the altitude range between 300 and 480 km, we conclude that the NmF2 maximum in the GSM TIP output can be trusted. Indeed, such high-latitude NmF2, ionospheric electron content, and TEC maxima in the American longitude sector form on the proper places as shown by the GSM TIP data, COSMIC and GPS observations. According to our results, the high-latitude maximum of NmF2 (1) manifests itself only when the integration over LT or UT of the global maps for 22 December 2009 includes nighttime, i.e., supporting an argument of its close association with the Weddell Sea Anomaly, and (2) also appears in the Ne distribution at altitudes above the F2 peak

    Solar Flare Effects Observed over Mexico during 30–31 March 2022

    Full text link
    Manifestations of two solar flares of March 2022 were studied over Mexico. The flare effects in the lower ionosphere had a ~3 min delay from the X1.3-flare onset and ~5 min from the M9.6-flare onset. The maximal impact on the HF signal amplitude was ~(14–15) min after the onset of both flares. The X1.3-flare provoked the shortwave fadeout during ~6 min. The effects in the lower ionosphere lasted longer than the flares and the effects at the F2 region and higher altitudes only during the flares. The interpretation of results showed the following. (1) Based on the absorption level estimated with minimum frequency and signal amplitude on ionograms, the major role of X-ray radiation in the electron concentration increase in the lower ionosphere was confirmed. At the same time, the EUV radiation impact on the lower ionosphere cannot be totally discarded. The lower ionosphere recovery began before and lasted after the X1.3-flare end, being more rapid at Eglin than in Mexico. During M9.6-flare, the responses at the two observation points were rather synchronized due to the more similar illumination conditions at the two meridians. (2) According to the dI variations characterizing the F2 region and higher, the M9.6-flare provoked medium-scale and the X1.3-flare provoked both medium- and small-scale ionospheric irregularities. The response duration corresponded to the dI series filtered with (10–20) min windows. The dI curve during the flares was characterized by the И-form and depended more on the active region position and the flare class than on the solar zenith angle. The available data do not allow us to unambiguously identify the reason for the negative dI: the applied filtering procedure or the physical effect. (3) During both flares, the major EUV impact on the lower ionosphere was by the flux at 133.5 nm and on the F2 region and higher altitudes at 25.6 nm. In addition, during the M9.6-flare, EUV 28.4, 30.4 and 121.6 nm spectral bands also played an important role in the F2 response. During the X1.3-flare, the EUV 25.6 nm flux and X-ray flux impacts on the F2 region were of the same level. The weakest impact was caused by the emission in the EUV 28.4 nm spectral band on the absorption in the lower ionosphere during both flares and on the electron density in the F2 region and higher during the X1.3-flare

    Assessment of Morelian Meteoroid Impact on Mexican Environment

    Full text link
    Possible ionospheric effects of the Morelian meteoroid that passed and exploded over Mexico on 19 February 2020 (18 February 2020 local time) were estimated. The meteoroid trajectory, velocity and time of occurrence were calculated based on outdoor camera records. Modeling was used to estimate the meteoroid initial diameter, density, mass, velocity, energy and their change during its flight in the atmosphere. The ensemble of ionospheric scintillation indices calculated from the high-rate GNSS data and the filtered slant Total Electron Content data were used to reveal the presence of ionospheric disturbances generated by shock waves excited by the meteoroid flight and explosion. The first ionospheric responses to phenomena accompanying the meteoroid were detected (2.5–3.5) min after the explosion. The disturbances were attenuated quickly with distance from their source and were rarely recorded by GNSS receivers located more than 600 km from the meteoroid explosion site. The ionospheric disturbances of intermediate-scale, small-scale, shock-acoustic-wave-scale and sometimes medium-scale were revealed. The detected disturbances corresponded to the range of acoustic-gravity waves. An asymmetry of the disturbance manifestation in different directions was observed. The obtained results are in accordance with results of the observation of other meteoroids. Although the object was smaller and of less energy than other known meteoroids, it is an interesting case because, to the best of our knowledge, it isthe first known to us low-latitude meteoroid with the detected ionospheric effects
    corecore