200 research outputs found
First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields
We present the first results of our search for transiting exoplanet
candidates as part of the Kourovka Planet Search (KPS) project. The primary
objective of the project is to search for new hot Jupiters which transit their
host stars, mainly in the Galactic plane, in the magnitude range of 11 to
14 mag. Our observations were performed with the telescope of the MASTER
robotic network, installed at the Kourovka astronomical observatory of the Ural
Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph,
installed at the private Acton Sky Portal Observatory (USA). As test
observations, we observed three celestial fields of size deg
during the period from 2012 to 2015. As a result, we discovered four transiting
exoplanet candidates among the 39000 stars of the input catalogue. In this
paper, we provide the description of the project and analyse additional
photometric, spectral, and speckle interferometric observations of the
discovered transiting exoplanet candidates. Three of the four transiting
exoplanet candidates are most likely astrophysical false positives, while the
nature of the fourth (most promising) candidate remains to be ascertained.
Also, we propose an alternative observing strategy that could increase the
project's exoplanet haul.Comment: 11 pages, 16 figures; Accepted for publication in Monthly Notices of
the Royal Astronomical Society 201
OES diagnostics as a universal technique to control the Si etching structures profile in ICP
In this work, we demonstrate the high efficiency of optical emission spectroscopy to estimate the etching profile of silicon structures in SF/CF/O plasma. The etching profile is evaluated as a ratio of the emission intensity of the oxygen line (778.1 nm) to the fluorine lines (685.8 nm and 703.9 nm). It was found that for the creation of directional structures with line sizes from 13 to 100 μm and aspect ratio from ≈ 0.15 to ≈ 5 the optimal intensities ratio is in the range of 2–6, and for structures from 400 to 4000 μm with aspect ratio from ≈ 0.03 to ≈ 0.37 it is in the range 1.5–2. Moreover, the influence of the process parameters on the etching rate of silicon, the etching rate of aluminum, the inclination angle of the profile wall of the etched window, the selectivity of silicon etching with respect to aluminum, and the influence on the overetching (Bowing effect) of the structure was investigated
Unusual magnetoelectric effect in paramagnetic rare-earth langasite
Violation of time reversal and spatial inversion symmetries has profound
consequences for elementary particles and cosmology. Spontaneous breaking of
these symmetries at phase transitions gives rise to unconventional physical
phenomena in condensed matter systems, such as ferroelectricity induced by
magnetic spirals, electromagnons, non-reciprocal propagation of light and spin
waves, and the linear magnetoelectric (ME) effect - the electric polarization
proportional to the applied magnetic field and the magnetization induced by the
electric field. Here, we report the experimental study of the holmium-doped
langasite, HoLaGaSiO, showing a puzzling combination
of linear and highly non-linear ME responses in the disordered paramagnetic
state: its electric polarization grows linearly with the magnetic field but
oscillates many times upon rotation of the magnetic field vector. We propose a
simple phenomenological Hamiltonian describing this unusual behavior and derive
it microscopically using the coupling of magnetic multipoles of the rare-earth
ions to the electric field.Comment: 8 pages, 3 figure
Ocean-bottom seismographs based on broadband MET sensors: architecture and deployment case study in the Arctic
The Arctic seas are now of particular interest due to their prospects in terms of hydrocarbon extraction, development of marine transport routes, etc. Thus, various geohazards, including those related to seismicity, require detailed studies, especially by instrumental methods. This paper is devoted to the ocean-bottom seismographs (OBS) based on broadband molecular–electronic transfer (MET) sensors and a deployment case study in the Laptev Sea. The purpose of the study is to introduce the architecture of several modifications of OBS and to demonstrate their applicability in solving different tasks in the framework of seismic hazard assessment for the Arctic seas. To do this, we used the first results of several pilot deployments of the OBS developed by Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) and IP Ilyinskiy A.D. in the Laptev Sea that took place in 2018–2020. We highlighted various seismological applications of OBS based on broadband MET sensors CME-4311 (60 s) and CME-4111 (120 s), including the analysis of ambient seismic noise, registering the signals of large remote earthquakes and weak local microearthquakes, and the instrumental approach of the site response assessment. The main characteristics of the broadband MET sensors and OBS architectures turned out to be suitable for obtaining high-quality OBS records under the Arctic conditions to solve seismological problems. In addition, the obtained case study results showed the prospects in a broader context, such as the possible influence of the seismotectonic factor on the bottom-up thawing of subsea permafrost and massive methane release, probably from decaying hydrates and deep geological sources. The described OBS will be actively used in further Arctic expeditions
The First Post-Kepler Brightness Dips of KIC 8462852
We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
Memristive FG–PVA Structures Fabricated with the Use of High Energy Xe Ion Irradiation
A new approach based on the irradiation by heavy high energy ions (Xe ions with 26 and 167 MeV) was used for the creation of graphene quantum dots in the fluorinated matrix and the formation of the memristors in double-layer structures consisting of fluorinated graphene (FG) on polyvinyl alcohol (PVA). As a result, memristive switchings with an ON/OFF current relation ~2–4 orders of magnitude were observed in 2D printed crossbar structures with the active layer consisting of dielectric FG films on PVA after ion irradiation. All used ion energies and fluences (3 × 1010 and 3 × 1011 cm−2) led to the appearance of memristive switchings. Pockets with 103 pulses through each sample were passed for testing, and any changes in the ON/OFF current ratio were not observed. Pulse measurements allowed us to determine the time of crossbar structures opening of about 30–40 ns for the opening voltage of 2.5 V. Thus, the graphene quantum dots created in the fluorinated matrix by the high energy ions are a perspective approach for the development of flexible memristors and signal processing
- …