5 research outputs found

    Spatio-temporal mRNA dynamics in the early zebrafish embryo

    Get PDF
    Early stages of embryogenesis depend heavily on subcellular localization and transport of maternally deposited mRNA. However, systematic analysis of these processes is currently hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combined spatially-resolved transcriptomics and single-cell RNA labeling to study the spatio-temporal dynamics of the transcriptome during the first few hours of zebrafish development. We measured spatial localization of mRNA molecules with sub-single-cell resolution at the one-cell stage, which allowed us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we established a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enabled us to follow the fate of individual maternal transcripts until gastrulation. This approach revealed that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquired spatial transcriptomes of two xenopus species, and we compared evolutionary conservation of localized genes as well as enriched sequence motifs. In summary, we established sub-single-cell spatial transcriptomics and single-cell RNA labeling to reveal principles of mRNA localization in early vertebrate development

    SLAM-Drop-seq reveals mRNA kinetic rates throughout the cell cycle

    Get PDF
    RNA abundance is tightly regulated in eukaryotic cells by modulating the kinetic rates of RNA production, processing, and degradation. To date, little is known about time-dependent kinetic rates during dynamic processes. Here, we present SLAM-Drop-seq, a method that combines RNA metabolic labeling and alkylation of modified nucleotides in methanol-fixed cells with droplet-based sequencing to detect newly synthesized and preexisting mRNAs in single cells. As a first application, we sequenced 7280 HEK293 cells and calculated gene-specific kinetic rates during the cell cycle using the novel package Eskrate. Of the 377 robust-cycling genes that we identified, only a minor fraction is regulated solely by either dynamic transcription or degradation (6 and 4%, respectively). By contrast, the vast majority (89%) exhibit dynamically regulated transcription and degradation rates during the cell cycle. Our study thus shows that temporally regulated mRNA degradation is fundamental for the correct expression of a majority of cycling genes. SLAM-Drop-seq, combined with Eskrate, is a powerful approach to understanding the underlying mRNA kinetics of single-cell gene expression dynamics in continuous biological processes

    Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy

    Get PDF
    Detailed knowledge of the molecular biology of SARS-CoV-2 infection is crucial for understanding of viral replication, host responses and disease progression. Here, we report gene expression profiles of three SARS-CoV and SARS-CoV-2 infected human cell lines. SARS-CoV-2 elicited an approximately two-fold higher stimulation of the innate immune response compared to SARS-CoV in the human epithelial cell line Calu-3, including induction of miRNA-155. Single-cell RNA sequencing of infected cells showed that genes induced by virus infections were broadly upregulated, whereas interferon beta/lambda genes an pro-inflammatory cytokines such as IL-6 were expressed only in small subsets of infected cells. Temporal analysis suggested that transcriptional activities of interferon regulatory factors precede those of nuclear factor κB. Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 activity resulted in a reduction of viral replication and pro-inflammatory cytokine expression in primary human airway epithelial cells
    corecore