7 research outputs found

    CD38: an ecto-enzyme with functional diversity in T cells

    Get PDF
    CD38, a nicotinamide adenine dinucleotide (NAD)+ glycohydrolase, is considered an activation marker of T lymphocytes in humans that is highly expressed during certain chronic viral infections. T cells constitute a heterogeneous population; however, the expression and function of CD38 has been poorly defined in distinct T cell compartments. We investigated the expression and function of CD38 in naïve and effector T cell subsets in the peripheral blood mononuclear cells (PBMCs) from healthy donors and people with HIV (PWH) using flow cytometry. Further, we examined the impact of CD38 expression on intracellular NAD+ levels, mitochondrial function, and intracellular cytokine production in response to virus-specific peptide stimulation (HIV Group specific antigen; Gag). Naïve T cells from healthy donors showed remarkably higher levels of CD38 expression than those of effector cells with concomitant reduced intracellular NAD+ levels, decreased mitochondrial membrane potential and lower metabolic activity. Blockade of CD38 by a small molecule inhibitor, 78c, increased metabolic function, mitochondrial mass and mitochondrial membrane potential in the naïve T lymphocytes. PWH exhibited similar frequencies of CD38+ cells in the T cell subsets. However, CD38 expression increased on Gag-specific IFN-γ and TNF-α producing cell compartments among effector T cells. 78c treatment resulted in reduced cytokine production, indicating its distinct expression and functional profile in different T cell subsets. In summary, in naïve cells high CD38 expression reflects lower metabolic activity, while in effector cells it preferentially contributes to immunopathogenesis by increasing inflammatory cytokine production. Thus, CD38 may be considered as a therapeutic target in chronic viral infections to reduce ongoing immune activation

    New Therapeutics for HCC: Does Tumor Immune Microenvironment Matter?

    No full text
    The incidence of liver cancer is continuously rising where hepatocellular carcinoma (HCC) remains the most common form of liver cancer accounting for approximately 80–90% of the cases. HCC is strongly prejudiced by the tumor microenvironment and being an inflammation-associated condition, the contribution of various immune mechanisms is critical in its development, progression, and metastasis. The tumor immune microenvironment is initially inflammatory which is subsequently replenished by the immunosuppressive cells contributing to tumor immune escape. Regardless of substantial advancement in systemic therapy, HCC has poor prognosis and outcomes attributed to the drug resistance, recurrence, and its metastatic behavior. Therefore, currently, new immunotherapeutic strategies are extensively targeted in preclinical and clinical settings in order to elicit robust HCC-specific immune responses and appear to be quite effective, extending current treatment alternatives. Understanding the complex interplay between the tumor and the immune cells and its microenvironment will provide new insights into designing novel immunotherapeutics to overcome existing treatment hurdles. In this review, we have provided a recent update on immunological mechanisms associated with HCC and discussed potential advancement in immunotherapies for HCC treatment

    Immunopathology of Chronic Hepatitis B Infection: Role of Innate and Adaptive Immune Response in Disease Progression

    No full text
    More than 250 million people are living with chronic hepatitis B despite the availability of highly effective vaccines and oral antivirals. Although innate and adaptive immune cells play crucial roles in controlling hepatitis B virus (HBV) infection, they are also accountable for inflammation and subsequently cause liver pathologies. During the initial phase of HBV infection, innate immunity is triggered leading to antiviral cytokines production, followed by activation and intrahepatic recruitment of the adaptive immune system resulting in successful virus elimination. In chronic HBV infection, significant alterations in both innate and adaptive immunity including expansion of regulatory cells, overexpression of co-inhibitory receptors, presence of abundant inflammatory mediators, and modifications in immune cell derived exosome release and function occurs, which overpower antiviral response leading to persistent viral infection and subsequent immune pathologies associated with disease progression towards fibrosis, cirrhosis, and hepatocellular carcinoma. In this review, we discuss the current knowledge of innate and adaptive immune cells transformations that are associated with immunopathogenesis and disease outcome in CHB patients

    Immune-Mediated Pathogenesis in Dengue Virus Infection

    No full text
    Dengue virus (DENV) infection is one of the major public health concerns around the globe, especially in the tropical regions of the world that contribute to 75% percent of dengue cases. While the majority of DENV infections are mild or asymptomatic, approximately 5% of the cases develop a severe form of the disease that is mainly attributed to sequential infection with different DENV serotypes. The severity of dengue depends on many immunopathogenic mechanisms involving both viral and host factors. Emerging evidence implicates an impaired immune response as contributing to disease progression and severity by restricting viral clearance and inducing severe inflammation, subsequently leading to dengue hemorrhagic fever and dengue shock syndrome. Moreover, the ability of DENV to infect a wide variety of immune cells, including monocytes, macrophages, dendritic cells, mast cells, and T and B cells, further dysregulates the antiviral functions of these cells, resulting in viral dissemination. Although several risk factors associated with disease progression have been proposed, gaps persist in the understanding of the disease pathogenesis and further investigations are warranted. In this review, we discuss known mechanisms of DENV-mediated immunopathogenesis and its association with disease progression and severity

    Blockade of Neutrophil's Chemokine Receptors CXCR1/2 Abrogate Liver Damage in Acute-on-Chronic Liver Failure.

    Get PDF
    Neutrophils serve as critical players in the pathogenesis of liver diseases. Chemokine receptors CXCR1 and CXCR2 are required for neutrophil chemotaxis to the site of inflammation/injury and are crucial in hepatic inflammatory response. However, key mechanism of neutrophil-mediated liver injury in acute-on-chronic liver failure (ACLF) remains highly elusive; which could be targeted for the development of new therapeutic interventions

    Circulating Tregs correlate with viral load reduction in chronic HBV-treated patients with tenofovir disoproxil fumarate

    No full text
    Limited response to current hepatitis B virus (HBV) drugs is possibly due to inadequate host cytotoxic cellular responses. Circulating Tregs have been shown to be associated with chronicity of HBV infection, but their profile during antiviral therapy has not been studied. We analyzed the frequency and effect of Tregs on cellular immune responses against HBV in 35 chronic hepatitis B eAg-ve and eAg+ve patients treated with tenofovir 300 mg/day. Frequency of Tregs and their modulatory role in cytokine-secreting cells were determined after stimulation with HBsAg or HBcAg in the absence or presence of Tregs and after blockage of PD-1/PDL-1 in peripheral blood mononuclear cells (PBMCs). Prior to therapy, eAg-ve patients had lower HBV DNA levels, reduced CD8 T cells, increased Tregs, and T cells expressing PD1. After 12 weeks of therapy, &gt;2 log HBV viral reduction was observed in both groups, along with an increase frequencies of CD8 T cells in eAg-ve patients and increased expression of chemokine receptors/Toll-like receptors in both groups. PD-1 expression on CD8 cells in PBMCs was decreased in both groups during therapy but not on Tregs. In eAg-ve group, sustained increase of Tregs was observed till week 12, which declined at week 24. In both groups, after 24 weeks, depletion of CD4<SUP>+</SUP>CD25<SUP>+</SUP> Tregs from PBMCs enhanced HBV-specific T cell responses, and blockage of PD-1/PDL1 pathway did enhance pro-inflammatory cytokine production in eAg+ve patients but not in eAg-ve. We conclude that Tregs induced by HBV replication in vivo are expanded in eAg-ve patients more. Reduction in HBV DNA by tenofovir partially restored adaptive immune responses and also reduced the Tregs. Blockage of PD-1/PDL1, enhanced cytokine production in eAg+ve patients but not in eAg-ve, suggests that distinctly different immunologic mechanisms are involved in eAg+ve and eAg-ve patients
    corecore