15 research outputs found

    Whole-cell detection of live lactobacillus acidophilus on aptamer-decorated porous silicon biosensors

    Get PDF
    This work describes the design of optical aptamer-based porous silicon (PSi) biosensors for the direct capture of Lactobacillus acidophilus. Aptamers are oligonucleotides (single-stranded DNA or RNA) that can bind their targets with high affinity and specificity, making them excellent recognition elements for biosensing applications. Herein, aptamer Hemag1P, which specifically targets the important probiotic L. acidophilus, was utilized for direct bacteria capture onto oxidized PSi Fabry-Perot thin films. Monitoring changes in the reflectivity spectrum (using reflective interferometric Fourier transform spectroscopy) allows for bacteria detection in a label-free, simple and rapid manner. The performance of the biosensor was optimized by tuning the PSi nanostructure, its optical properties, as well as the immobilization density of the aptamer. We demonstrate the high selectivity and specificity of this simple "direct-capture" biosensing scheme and show its ability to distinguish between live and dead bacteria. The resulting biosensor presents a robust and rapid method for the specific detection of live L. acidophilus at concentrations relevant for probiotic products and as low as 10(6) cells per mL. Rapid monitoring of probiotic bacteria is crucial for quality, purity and safety control as the use of probiotics in functional foods and pharmaceuticals is becoming increasingly popular.DFG/CHE 279/32-

    G-protein signaling: back to the future

    Get PDF
    Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/Gβγ heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from Gβγ. Gα·GTP and Gβγ target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation — a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) β is activated by Gαq and Gβγ, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways

    Comprehensive identification of mRNA isoforms reveals the diversity of neural cell-surface molecules with roles in retinal development and disease

    No full text
    Here the authors present an approach that can reveal the full complement of mRNA isoforms encoded by individual genes, and they identify a major isoform of the retinal degeneration gene CRB1 which functions at the cell-cell junctions of the outer limiting membrane to promote photoreceptor survival

    Properties and Mechanisms of Locomotion

    No full text

    Spinal Cord and Brainstem: Pattern Generators and Reflexes

    No full text
    corecore