9 research outputs found

    Generalized Boltzmann Equation in a Manifestly Covariant Relativistic Statistical Mechanics

    Get PDF
    We consider the relativistic statistical mechanics of an ensemble of NN events with motion in space-time parametrized by an invariant ``historical time'' τ.\tau . We generalize the approach of Yang and Yao, based on the Wigner distribution functions and the Bogoliubov hypotheses, to find the approximate dynamical equation for the kinetic state of any nonequilibrium system to the relativistic case, and obtain a manifestly covariant Boltzmann-type equation which is a relativistic generalization of the Boltzmann-Uehling-Uhlenbeck (BUU) equation for indistinguishable particles. This equation is then used to prove the HH-theorem for evolution in τ.\tau . In the equilibrium limit, the covariant forms of the standard statistical mechanical distributions are obtained. We introduce two-body interactions by means of the direct action potential V(q),V(q), where qq is an invariant distance in the Minkowski space-time. The two-body correlations are taken to have the support in a relative O(2,1)O( 2,1)-invariant subregion of the full spacelike region. The expressions for the energy density and pressure are obtained and shown to have the same forms (in terms of an invariant distance parameter) as those of the nonrelativistic theory and to provide the correct nonrelativistic limit

    Umbral Calculus, Discretization, and Quantum Mechanics on a Lattice

    Full text link
    `Umbral calculus' deals with representations of the canonical commutation relations. We present a short exposition of it and discuss how this calculus can be used to discretize continuum models and to construct representations of Lie algebras on a lattice. Related ideas appeared in recent publications and we show that the examples treated there are special cases of umbral calculus. This observation then suggests various generalizations of these examples. A special umbral representation of the canonical commutation relations given in terms of the position and momentum operator on a lattice is investigated in detail.Comment: 19 pages, Late

    Equilibrium Relativistic Mass Distribution for Indistinguishable Events

    Full text link
    A manifestly covariant relativistic statistical mechanics of the system of NN indistinguishable events with motion in space-time parametrized by an invariant ``historical time'' τ\tau is considered. The relativistic mass distribution for such a system is obtained from the equilibrium solution of the generalized relativistic Boltzmann equation by integration over angular and hyperbolic angular variables. All the characteristic averages are calculated. Expressions for the pressure and the density of events are found and the relativistic equation of state is obtained. The Galilean limit is considered; the theory is shown to pass over to the usual nonrelativistic statistical mechanics of indistinguishable particles.Comment: TAUP-2115-9

    Relativistic mass distribution in event-anti-event system and ``realistic'' equation of state for hot hadronic matter

    Get PDF
    We find the equation of state p,ρT6,p,\rho \propto T^6, which gives the value of the sound velocity c2=0.20,c^2=0.20, in agreement with the ``realistic'' equation of state for hot hadronic matter suggested by Shuryak, in the framework of a covariant relativistic statistical mechanics of an event--anti-event system with small chemical and mass potentials. The relativistic mass distribution for such a system is obtained and shown to be a good candidate for fitting hadronic resonances, in agreement with the phenomenological models of Hagedorn, Shuryak, {\it et al.} This distribution provides a correction to the value of specific heat 3/2, of the order of 5.5\%, at low temperatures.Comment: 19 pages, report TAUP-2161-9
    corecore