333 research outputs found
Effect of the Pauli principle on photoelectron spin transport in GaAs
In p+ GaAs thin films, the effect of photoelectron degeneracy on spin
transport is investigated theoretically and experimentally by imaging the spin
polarization profile as a function of distance from a tightly-focussed light
excitation spot. Under degeneracy of the electron gas (high concentration, low
temperature), a dip at the center of the polarization profile appears with a
polarization maximum at a distance of about from the center. This
counterintuitive result reveals that photoelectron diffusion depends on spin,
as a direct consequence of the Pauli principle. This causes a concentration
dependence of the spin stiffness while the spin dependence of the mobility is
found to be weak in doped material. The various effects which can modify spin
transport in a degenerate electron gas under local laser excitation are
considered. A comparison of the data with a numerical solution of the coupled
diffusion equations reveals that ambipolar coupling with holes increases the
steady-state photo-electron density at the excitation spot and therefore the
amplitude of the degeneracy-induced polarization dip. Thermoelectric currrents
are predicted to depend on spin under degeneracy (spin Soret currents), but
these currents are negligible except at very high excitation power where they
play a relatively small role. Coulomb spin drag and bandgap renormalization are
negligible due to electrostatic screening by the hole gas
Spin and recombination dynamics of excitons and free electrons in p-type GaAs : effect of carrier density
Carrier and spin recombination are investigated in p-type GaAs of acceptor
concentration NA = 1.5 x 10^(17) cm^(-3) using time-resolved photoluminescence
spectroscopy at 15 K. At low pho- tocarrier concentration, acceptors are mostly
neutral and photoelectrons can either recombine with holes bound to acceptors
(e-A0 line) or form excitons which are mostly trapped on neutral acceptors
forming the (A0X) complex. It is found that the spin lifetime is shorter for
electrons that recombine through the e-A0 transition due to spin relaxation
generated by the exchange scattering of free electrons with either trapped or
free holes, whereas spin flip processes are less likely to occur once the
electron forms with a free hole an exciton bound to a neutral acceptor. An
increase of exci- tation power induces a cross-over to a regime where the
bimolecular band-to-band (b-b) emission becomes more favorable due to screening
of the electron-hole Coulomb interaction and ionization of excitonic complexes
and free excitons. Then, the formation of excitons is no longer possible, the
carrier recombination lifetime increases and the spin lifetime is found to
decrease dramatically with concentration due to fast spin relaxation with free
photoholes. In this high density regime, both the electrons that recombine
through the e-A0 transition and through the b-b transition have the same spin
relaxation time.Comment: 4 pages, 5 figure
Spin dependent photoelectron tunnelling from GaAs into magnetic Cobalt
The spin dependence of the photoelectron tunnel current from free standing
GaAs films into out-of- plane magnetized Cobalt films is demonstrated. The
measured spin asymmetry (A) resulting from a change in light helicity, reaches
+/- 6% around zero applied tunnel bias and drops to +/- 2% at a bias of -1.6 V
applied to the GaAs. This decrease is a result of the drop in the photoelectron
spin polarization that results from a reduction in the GaAs surface
recombination velocity. The sign of A changes with that of the Cobalt
magnetization direction. In contrast, on a (nonmagnetic) Gold film A ~ 0%
Absence of an intrinsic value for the surface recombination velocity in doped semiconductors
A self-consistent expression for the surface recombination velocity and
the surface Fermi level unpinning energy as a function of light excitation
power () is presented for n- and p-type semiconductors doped above the
10 cm range. Measurements of on p-type GaAs films using a
novel polarized microluminescence technique are used to illustrate two limiting
cases of the model. For a naturally oxidized surface is described by a
power law in whereas for a passivated surface varies
logarithmically with . Furthermore, the variation in with surface state
density and bulk doping level is found to be the result of Fermi level
unpinning rather than a change in the intrinsic surface recombination velocity.
It is concluded that depends on throughout the experimentally
accessible range of excitation powers and therefore that no instrinsic value
can be determined. Previously reported values of on a range of
semiconducting materials are thus only valid for a specific excitation power.Comment: 10 pages, 7 figure
Kernel functions and B\"acklund transformations for relativistic Calogero-Moser and Toda systems
We obtain kernel functions associated with the quantum relativistic Toda
systems, both for the periodic version and for the nonperiodic version with its
dual. This involves taking limits of previously known results concerning kernel
functions for the elliptic and hyperbolic relativistic Calogero-Moser systems.
We show that the special kernel functions at issue admit a limit that yields
generating functions of B\"acklund transformations for the classical
relativistic Calogero-Moser and Toda systems. We also obtain the
nonrelativistic counterparts of our results, which tie in with previous results
in the literature.Comment: 76 page
Elasticity of semiflexible polymers in two dimensions
We study theoretically the entropic elasticity of a semi-flexible polymer,
such as DNA, confined to two dimensions. Using the worm-like-chain model we
obtain an exact analytical expression for the partition function of the polymer
pulled at one end with a constant force. The force-extension relation for the
polymer is computed in the long chain limit in terms of Mathieu characteristic
functions. We also present applications to the interaction between a
semi-flexible polymer and a nematic field, and derive the nematic order
parameter and average extension of the polymer in a strong field.Comment: 16 pages, 3 figure
Classical and quantum three-dimensional integrable systems with axial symmetry
We study the most general form of a three dimensional classical integrable
system with axial symmetry and invariant under the axis reflection. We assume
that the three constants of motion are the Hamiltonian, , with the standard
form of a kinetic part plus a potential dependent on the position only, the
-component of the angular momentum, , and a Hamiltonian-like constant,
, for which the kinetic part is quadratic in the momenta. We find
the explicit form of these potentials compatible with complete integrability.
The classical equations of motion, written in terms of two arbitrary potential
functions, is separated in oblate spheroidal coordinates. The quantization of
such systems leads to a set of two differential equations that can be presented
in the form of spheroidal wave equations.Comment: 17 pages, 3 figure
Quasi-doubly periodic solutions to a generalized Lame equation
We consider the algebraic form of a generalized Lame equation with five free
parameters. By introducing a generalization of Jacobi's elliptic functions we
transform this equation to a 1-dim time-independent Schroedinger equation with
(quasi-doubly) periodic potential. We show that only for a finite set of
integral values for the five parameters quasi-doubly periodic eigenfunctions
expressible in terms of generalized Jacobi functions exist. For this purpose we
also establish a relation to the generalized Ince equation.Comment: 15 pages,1 table, accepted for publication in Journal of Physics
- âŠ