3 research outputs found

    Detection of carbapenemases blaOXA48-blaKPC-blaNDM-blaVIM and extended-spectrum-β-lactamase blaOXA1-blaSHV-blaTEM genes in Gram-negative bacterial isolates from ICU burns patients

    Get PDF
    BACKGROUND AND OBJECTIVES: Burn patients are highly susceptible to invasion by multidrug-resistant Gram-negative bacteria (MDR-GNB) through post-burn damage. The prevalence of MDR-GNB isolated from burns patients has increased dramatically in the last decade, representing a serious risk to patients admitted to burns units worldwide. The challenges of managing infected burns patients are exacerbated in poor resource settings. This study was designed to develop a pathway for the rapid diagnosis of multidrug-resistant (MDR) Gram-negative infections and identify the bacterial genes including blaOXA1, blaTEM, and blaSHV encoding ESBLs and blaOXA48, blaKPC, blaNDM, and blaVIM encoding carbapenemases from the patient of post burns infection.  METHODS: Clinical isolates were collected (August 2017 to August 2018) from Intensive care unit (ICU) of Burn Centre. Antibiotic susceptibility testing and phenotypic detection of ESBLs and carbapenemases was performed by disk diffusion, double disk synergy test (DDST), combination disk test (CDT), and Imipenem + EDTA combined disk test (IMP + EDTA CDT). Polymerase chain reaction (PCR) detection was performed for ESBLs blaOXA1-blaSHV-blaTEM and carbapenemases genes blaOXA48-blaKPC-blaNDM-blaVIM RESULTS: In total, of 170 Gram-negative isolates, 104 (61.2%) were confirmed as multidrug-resistant (MDR); Pseudomonas aeruginosa was found to be the most prevalent 43/104 (41.4%), followed by Klebsiella pneumoniae 17/104 (16.4%), Acinetobacter baumannii12/104 (11.5%), and 6/104 Proteus mirabilis (5.8%). All isolates (100%) were resistant to cefotaxime and ceftazidime, while the meropenem resistance was 58.7%. ESBL and carbapenemase genotypes were found to be associated with higher MAR index (0.65-0.88) and MIC (> 32 µg/ml) values P. aeruginosa was the major ESBL and carbapenemase producer as determined by phenotypic testing and PCR. blaTEM positive isolates among ESBLs producers were predominant 81.8% (27/33), followed by 27.3% blaOXA1 and blaSHV, respectively. blaVIM positive isolates among carbapenemase producers were predominant 47.7% (21/44), followed by 27.3% blaKPC, 20.5% blaOXA48, and 11.4% blaNDM positive isolates. CONCLUSIONS: The predominant organism causing burn infections was ESBL and carbapenemase-producing Pseudomonas aeruginosa. There are only limited effective antibiotics against such strains. blaVIM and blaTEM individually and in co-existence with blaKPC, blaOXA48, blaSHV, and blaOXA1 confer antimicrobial resistance in burns patients. Rapid detection of ESBL and carbapenemase genes will inform treatment strategies improving the outcome for post-burn patients in ICU

    Detection of human T-cell lymphotropic virus type 1 in plasma samples

    Full text link
    Human T-cell lymphotropic virus type 1 (HTLV-1) is-an RNA virus responsible for diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATL). Cell-to-cell contact and Tax-induced clonal expansion of infected cells are the main modes of virus replication, making virus detection during the viremic stage difficult. Consequently, the proviral load is the current virologic marker for disease monitoring, but the mechanisms of progression have not been established yet. Thus, this study investigated the presence of virus in plasma from asymptomatic HTLV-1 carriers and from HAM/TSP patients. Real-time PCR was performed on DNA from 150 plasma samples; 12(8%) had detectable DNA amplification, including 6(4%) asymptomatic HTLV-1 carriers and 14(26%) HAM/TSP patients (p < 0.005). Of the 33 samples submitted for nested PCR, six (18%, p = 0.02) were positive for HTLV-1 RNA in the plasma. Additionally, 26 plasma samples were treated with DNAse enzyme to eliminate any DNA contamination before RNA extraction. Two of them (8%) showed amplification for HTLV-1 (p = 0.5). Therefore, this study described for the first time the detection of free HTLV-1 RNA in plasma from HTLV-1-infected subjects, regardless of their clinical status. Thus, HTLV-1 viral replication does occur in plasma, and other transmission pathways for HTLV-1 should be investigated further. (C) 2011 Elsevier B.V. All rights reserved.FAPESPFAPESP [99/11188-1, 2008/56427-4

    WAO International Scientific Conference (WISC 2016) Abstracts

    Full text link
    corecore