692 research outputs found
ASYMPTOTIC BEHAVIOR OF COMPLEX SCALAR FIELDS IN A FRIEDMAN-LEMAITRE UNIVERSE
We study the coupled Einstein-Klein-Gordon equations for a complex scalar
field with and without a quartic self-interaction in a curvatureless
Friedman-Lema\^{\i}\-tre Universe. The equations can be written as a set of
four coupled first order non-linear differential equations, for which we
establish the phase portrait for the time evolution of the scalar field. To
that purpose we find the singular points of the differential equations lying in
the finite region and at infinity of the phase space and study the
corresponding asymptotic behavior of the solutions. This knowledge is of
relevance, since it provides the initial conditions which are needed to solve
numerically the differential equations. For some singular points lying at
infinity we recover the expected emergence of an inflationary stage.Comment: uuencoded, compressed tarfile containing a 15 pages Latex file and 2
postscipt figures. Accepted for publication on Phys. Rev.
Global periodicity conditions for maps and recurrences via Normal Forms
We face the problem of characterizing the periodic cases in parametric
families of (real or complex) rational diffeomorphisms having a fixed point.
Our approach relies on the Normal Form Theory, to obtain necessary conditions
for the existence of a formal linearization of the map, and on the introduction
of a suitable rational parametrization of the parameters of the family. Using
these tools we can find a finite set of values p for which the map can be
p-periodic, reducing the problem of finding the parameters for which the
periodic cases appear to simple computations. We apply our results to several
two and three dimensional classes of polynomial or rational maps. In particular
we find the global periodic cases for several Lyness type recurrences.Comment: 25 page
Low-density series expansions for directed percolation IV. Temporal disorder
We introduce a model for temporally disordered directed percolation in which
the probability of spreading from a vertex , where is the time and
is the spatial coordinate, is independent of but depends on . Using
a very efficient algorithm we calculate low-density series for bond percolation
on the directed square lattice. Analysis of the series yields estimates for the
critical point and various critical exponents which are consistent with a
continuous change of the critical parameters as the strength of the disorder is
increased.Comment: 11 pages, 3 figure
Low-density series expansions for directed percolation III. Some two-dimensional lattices
We use very efficient algorithms to calculate low-density series for bond and
site percolation on the directed triangular, honeycomb, kagom\'e, and
lattices. Analysis of the series yields accurate estimates of the critical
point and various critical exponents. The exponent estimates differ only
in the digit, thus providing strong numerical evidence for the
expected universality of the critical exponents for directed percolation
problems. In addition we also study the non-physical singularities of the
series.Comment: 20 pages, 8 figure
Switching dynamics of surface stabilized ferroelectric liquid crystal cells: effects of anchoring energy asymmetry
We study both theoretically and experimentally switching dynamics in surface
stabilized ferroelectric liquid crystal cells with asymmetric boundary
conditions. In these cells the bounding surfaces are treated differently to
produce asymmetry in their anchoring properties. Our electro-optic measurements
of the switching voltage thresholds that are determined by the peaks of the
reversal polarization current reveal the frequency dependent shift of the
hysteresis loop. We examine the predictions of the uniform dynamical model with
the anchoring energy taken into account. It is found that the asymmetry effects
are dominated by the polar contribution to the anchoring energy. Frequency
dependence of the voltage thresholds is studied by analyzing the properties of
time-periodic solutions to the dynamical equation (cycles). For this purpose,
we apply the method that uses the parameterized half-period mappings for the
approximate model and relate the cycles to the fixed points of the composition
of two half-period mappings. The cycles are found to be unstable and can only
be formed when the driving frequency is lower than its critical value. The
polar anchoring parameter is estimated by making a comparison between the
results of modelling and the experimental data for the shift vs frequency
curve. For a double-well potential considered as a deformation of the
Rapini-Papoular potential, the branch of stable cycles emerges in the low
frequency region separated by the gap from the high frequency interval for
unstable cycles.Comment: 35 pages, 15 figure
A Study Of A New Class Of Discrete Nonlinear Schroedinger Equations
A new class of 1D discrete nonlinear Schrdinger Hamiltonians
with tunable nonlinerities is introduced, which includes the integrable
Ablowitz-Ladik system as a limit. A new subset of equations, which are derived
from these Hamiltonians using a generalized definition of Poisson brackets, and
collectively refered to as the N-AL equation, is studied. The symmetry
properties of the equation are discussed. These equations are shown to possess
propagating localized solutions, having the continuous translational symmetry
of the one-soliton solution of the Ablowitz-Ladik nonlinear
Schrdinger equation. The N-AL systems are shown to be suitable
to study the combined effect of the dynamical imbalance of nonlinearity and
dispersion and the Peierls-Nabarro potential, arising from the lattice
discreteness, on the propagating solitary wave like profiles. A perturbative
analysis shows that the N-AL systems can have discrete breather solutions, due
to the presence of saddle center bifurcations in phase portraits. The
unstaggered localized states are shown to have positive effective mass. On the
other hand, large width but small amplitude staggered localized states have
negative effective mass. The collison dynamics of two colliding solitary wave
profiles are studied numerically. Notwithstanding colliding solitary wave
profiles are seen to exhibit nontrivial nonsolitonic interactions, certain
universal features are observed in the collison dynamics. Future scopes of this
work and possible applications of the N-AL systems are discussed.Comment: 17 pages, 15 figures, revtex4, xmgr, gn
The Einstein static universe in Loop Quantum Cosmology
Loop Quantum Cosmology strongly modifies the high-energy dynamics of
Friedman-Robertson-Walker models and removes the big-bang singularity. We
investigate how LQC corrections affect the stability properties of the Einstein
static universe. In General Relativity, the Einstein static model with positive
cosmological constant Lambda is unstable to homogeneous perturbations. We show
that LQC modifications can lead to a centre of stability for a large enough
positive value of Lambda.Comment: 12 pages, 7 figures; v2: minor changes to match published version in
Classical and Quantum Gravit
Surface critical behavior of bcc binary alloys
The surface critical behavior of bcc binary alloys undergoing a continuous
B2-A2 order-disorder transition is investigated in the mean-field (MF)
approximation. Our main aim is to provide clear evidence for the fact that
surfaces which break the two-sublattice symmetry generically display the
critical behavior of the NORMAL transition, whereas symmetry-preserving
surfaces exhibit ORDINARY surface critical behavior. To this end we analyze the
lattice MF equations for both types of surfaces in terms of nonlinear
symplectic maps and derive a Ginzburg-Landau model for the symmetry-breaking
(100) surface. The crucial feature of the continuum model is the emergence of
an EFFECTIVE ORDERING (``staggered'') SURFACE FIELD, which depends on
temperature and the other lattice model parameters, and which explains the
appearance of NORMAL critical behavior for symmetry-breaking surfaces.Comment: 16 pages, REVTeX 3.0, 13 EPSF figures, submitted to Phys. Rev.
- …