8 research outputs found

    A Milestone in the Chemical Synthesis of Fe3O4 Nanoparticles Unreported Bulklike Properties Lead to a Remarkable Magnetic Hyperthermia

    Get PDF
    Among iron oxide phases, magnetite Fe3O4 is often the preferred one for nanotechnological and biomedical applications because of its high saturation magnetization and low toxicity. Although there are several synthetic routes that attempt to reach magnetite nanoparticles NPs , they are usually referred as IONPs iron oxide NPs due to the great difficulty in obtaining the monophasic and stoichiometric Fe3O4 phase. Added to this problem is the common increase of size shape polydispersity when larger NPs D gt; 20 nm are synthesized. An unequivocal correlation between a nanomaterial and its properties can only be achieved by the production of highly homogeneous systems, which, in turn, is only possible by the continuous improvement of synthesis methods. There is no doubt that solving the compositional heterogeneity of IONPs while keeping them monodisperse remains a challenge for synthetic chemistry. Herein, we present a methodical optimization of the iron oleate decomposition method to obtain Fe3O4 single nanocrystals without any trace of secondary phases and with no need of postsynthetic treatment. The average dimension of the NPs, ranging from 20 to 40 nm, has been tailored by adjusting the total volume and the boiling point of the reaction mixture. Mössbauer spectroscopy and DC magnetometry have revealed that the NPs present a perfectly stoichiometric Fe3O4 phase. The high saturation magnetization 93 2 A m2 kg at RT and the extremely sharp Verwey transition at around 120 K shown by these NPs have no precedent. Moreover, the synthesis method has been refined to obtain NPs with octahedral morphology and suitable magnetic anisotropy, which significantly improves the magnetic hyperthemia performance. The heating power of properly PEGylated nano octahedrons has been investigated by AC magnetometry, confirming that the NPs present negligible dipolar interactions, which leads to an outstanding magnetothermal efficiency that does not change when the NPs are dispersed in environments with high viscosity and ionic strength. Additionally, the heat production of the NPs within physiological media has been directly measured by calorimetry under clinically safe conditions, reasserting the excellent adequacy of the system for hyperthermia therapies. To the best of our knowledge, this is the first time that such bulklike magnetite NPs with minimal size shape polydispersity, minor agglomeration, and exceptional heating power are chemically synthesize

    Shaping Up Zn Doped Magnetite Nanoparticles from Mono and Bimetallic Oleates The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance

    Get PDF
    The currently existing magnetic hyperthermia treatments usually need to employ very large doses of magnetic nanoparticles MNPs and or excessively high excitation conditions H f gt; 1010 A m s to reach the therapeutic temperature range that triggers cancer cell death. To make this anticancer therapy truly minimally invasive, it is crucial the development of improved chemical routes that give rise to monodisperse MNPs with high saturation magnetization and negligible dipolar interactions. Herein, we present an innovative chemical route to synthesize Zn doped magnetite NPs based on the thermolysis of two kinds of organometallic precursors i a mixture of two monometallic oleates FeOl ZnOl , and ii a bimetallic ironzinc oleate Fe3 amp; 8722;yZnyOl . These approaches have allowed tailoring the size 10 amp; 8722;50 nm , morphology spherical, cubic, and cuboctahedral , and zinc content ZnxFe3 amp; 8722;xO4, 0.05 lt; x lt; 0.25 of MNPs with high saturation magnetization amp; 8805;90 Am2 kg at RT . The oxidation state and the local symmetry of Zn2 and Fe2 3 cations have been investigated by means of X ray absorption near edge structure XANES spectroscopy, while the Fe center distribution and vacancies within the ferrite lattice have been examined in detail through Mo amp; 776;ssbauer spectroscopy, which has led to an accurate determination of the stoichiometry in each sample. To achieve good biocompatibility and colloidal stability in physiological conditions, the ZnxFe3 amp; 8722;xO4 NPs have been coated with high molecular weight poly ethylene glycol PEG . The magnetothermal efficiency of ZnxFe3 amp; 8722;xO4 PEG samples has been systematically analyzed in terms of composition, size, and morphology, making use of the latest generation AC magnetometer that is able to reach 90 mT. The heating capacity of Zn0.06Fe2.94O4 cuboctahedrons of 25 nm reaches a maximum value of 3652 W g at 40 kA m and 605 kHz , but most importantly, they reach a highly satisfactory value 600 W g under strict safety excitation conditions at 36 kA m and 125 kHz . Additionally, the excellent heating power of the system is kept identical both immobilized in agar and in the cellular environment, proving the great potential and reliability of this platform for magnetic hyperthermia therapie

    Dinuclear Metallacycles with Single M–O(H)–M Bridges [M = Fe(II), Co(II), Ni(II), Cu(II)]: Effects of Large Bridging Angles on Structure and Antiferromagnetic Superexchange Interactions

    No full text
    corecore