48 research outputs found

    Straight Line Orbits in Hamiltonian Flows

    Full text link
    We investigate periodic straight-line orbits (SLO) in Hamiltonian force fields using both direct and inverse methods. A general theorem is proven for natural Hamiltonians quadratic in the momenta in arbitrary dimension and specialized to two and three dimension. Next we specialize to homogeneous potentials and their superpositions, including the familiar H\'enon-Heiles problem. It is shown that SLO's can exist for arbitrary finite superpositions of NN-forms. The results are applied to a family of generalized H\'enon-Heiles potentials having discrete rotational symmetry. SLO's are also found for superpositions of these potentials.Comment: laTeX with 6 figure

    An Organic Metal/Silver Nanoparticle Finish on Copper for Efficient Passivation and Solderability Preservation

    Get PDF
    For the first time, a complex formed by polyaniline (in its organic metal form) and silver has been deposited on copper in nanoparticulate form. When depositing on Cu pads of printed circuit boards it efficiently protects against oxidation and preserves its solderability. The deposited layer has a thickness of only nominally 50 nm, containing the Organic Metal (conductive polymer), polyaniline, and silver. With >90% (by volume), polyaniline (PAni) is the major component of the deposited layer, Ag is present equivalent to a 4 nm thickness. The Pani–Ag complex is deposited on Cu in form of about 100 nm small particles. Morphology, electrochemical characteristics, anti-oxidation and solderability results are reported

    Investigating the nature of motion in 3D perturbed elliptic oscillators displaying exact periodic orbits

    Full text link
    We study the nature of motion in a 3D potential composed of perturbed elliptic oscillators. Our technique is to use the results obtained from the 2D potential in order to find the initial conditions generating regular or chaotic orbits in the 3D potential. Both 2D and 3D potentials display exact periodic orbits together with extended chaotic regions. Numerical experiments suggest, that the degree of chaos increases rapidly, as the energy of the test particle increases. About 97% of the phase plane of the 2D system is covered by chaotic orbits for large energies. The regular or chaotic character of the 2D orbits is checked using the S(c) dynamical spectrum, while for the 3D potential we use the S(c) spectrum, along with the P(f) spectral method. Comparison with other dynamical indicators shows that the S(c) spectrum gives fast and reliable information about the character of motion.Comment: Published in Nonlinear Dynamics (NODY) journa

    Involvement of a metalloprotease in the shedding of human neutrophil FcγRIIIB

    Get PDF
    AbstractFcγRIIIb is a glycosylphosphatidylinositol(GPI)-anchored, low-affinity IgG receptor, expressed exclusively on human neutrophils. Upon activation or apoptosis of neutrophils, FcγRIIIb is shed from the cell surface, but the enzyme(s) responsible for this process is (are) still unknown. Recently, metalloproteases have been suggested to mediate the shedding of cell surface proteins such as l-selectin and TNF-α. Using hydroxamic acid-based inhibitors of this class of proteases (BB-3103, Ro31-9790), we have observed a clear inhibitory effect on FcγRIIIb shedding after PMA stimulation of neutrophils or induction of apoptosis. These inhibitors did not affect PMA-induced degranulation or superoxide generation

    Epidemiological trends of HIV/HCV coinfection in Spain, 2015-2019

    Get PDF
    Altres ajuts: Spanish AIDS Research Network; European Funding for Regional Development (FEDER).Objectives: We assessed the prevalence of anti-hepatitis C virus (HCV) antibodies and active HCV infection (HCV-RNA-positive) in people living with HIV (PLWH) in Spain in 2019 and compared the results with those of four similar studies performed during 2015-2018. Methods: The study was performed in 41 centres. Sample size was estimated for an accuracy of 1%. Patients were selected by random sampling with proportional allocation. Results: The reference population comprised 41 973 PLWH, and the sample size was 1325. HCV serostatus was known in 1316 PLWH (99.3%), of whom 376 (28.6%) were HCV antibody (Ab)-positive (78.7% were prior injection drug users); 29 were HCV-RNA-positive (2.2%). Of the 29 HCV-RNA-positive PLWH, infection was chronic in 24, it was acute/recent in one, and it was of unknown duration in four. Cirrhosis was present in 71 (5.4%) PLWH overall, three (10.3%) HCV-RNA-positive patients and 68 (23.4%) of those who cleared HCV after anti-HCV therapy (p = 0.04). The prevalence of anti-HCV antibodies decreased steadily from 37.7% in 2015 to 28.6% in 2019 (p < 0.001); the prevalence of active HCV infection decreased from 22.1% in 2015 to 2.2% in 2019 (p < 0.001). Uptake of anti-HCV treatment increased from 53.9% in 2015 to 95.0% in 2019 (p < 0.001). Conclusions: In Spain, the prevalence of active HCV infection among PLWH at the end of 2019 was 2.2%, i.e. 90.0% lower than in 2015. Increased exposure to DAAs was probably the main reason for this sharp reduction. Despite the high coverage of treatment with direct-acting antiviral agents, HCV-related cirrhosis remains significant in this population

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl

    Measurement of the CKM angle γγ in B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm \to D π^\pm decays with DKS0h+hD \to K_\mathrm S^0 h^+ h^-

    Get PDF
    A measurement of CPCP-violating observables is performed using the decays B±DK±B^\pm\to D K^\pm and B±Dπ±B^\pm\to D \pi^\pm, where the DD meson is reconstructed in one of the self-conjugate three-body final states KSπ+πK_{\mathrm S}\pi^+\pi^- and KSK+KK_{\mathrm S}K^+K^- (commonly denoted KSh+hK_{\mathrm S} h^+h^-). The decays are analysed in bins of the DD-decay phase space, leading to a measurement that is independent of the modelling of the DD-decay amplitude. The observables are interpreted in terms of the CKM angle γ\gamma. Using a data sample corresponding to an integrated luminosity of 9fb19\,\text{fb}^{-1} collected in proton-proton collisions at centre-of-mass energies of 77, 88, and 13TeV13\,\text{TeV} with the LHCb experiment, γ\gamma is measured to be (68.75.1+5.2)\left(68.7^{+5.2}_{-5.1}\right)^\circ. The hadronic parameters rBDKr_B^{DK}, rBDπr_B^{D\pi}, δBDK\delta_B^{DK}, and δBDπ\delta_B^{D\pi}, which are the ratios and strong-phase differences of the suppressed and favoured B±B^\pm decays, are also reported

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore