43 research outputs found

    C1Q Assay Results in Complement-Dependent Cytotoxicity Crossmatch Negative Renal Transplant Candidates with Donor-Specific Antibodies: High Specificity but Low Sensitivity When Predicting Flow Crossmatch

    Get PDF
    The aim of the present study was to describe the association of positive flow cross match (FXM) and C1q-SAB. Methods. In this observational, cross-sectional, and comparative study, patients included had negative AHG-CDC-XM and donor specific antibodies (DSA) and were tested with FXM. All pretransplant sera were tested with C1q-SAB assay. Results. A total of 50 donor/recipient evaluations were conducted; half of them had at least one C1q+ Ab (n=26, 52%). Ten patients (20.0%) had DSA C1q+ Ab. Twenty-five (50%) FXMs were positive. Factors associated with a positive FXM were the presence of C1q+ Ab (DSA C1q+ Ab: OR 27, 2.80–259.56, P=0.004, and no DSA C1q+ Ab: OR 5, 1.27–19.68, P=0.021) and the DSA LABScreen-SAB MFI (OR 1.26, 95% CI 1.06–1.49, P=0.007). The cutoff point of immunodominant LABScreen SAB DSA-MFI with the greatest sensitivity and specificity to predict FXM was 2,300 (sensitivity: 72% and specificity: 75%). For FXM prediction, DSA C1q+ Ab was the most specific (95.8%, 85–100) and the combination of DSA-MFI > 2,300 and C1q+ Ab was the most sensitive (92.0%, 79.3–100). Conclusions. C1q+ Ab and LABScreen SAB DSA-MFI were significantly associated with FXM. DSA C1q+ Ab was highly specific but with low sensitivity

    Punica granatum L. protects mice against hexavalent chromium-induced genotoxicity

    Get PDF
    This study investigated the chemoprotective effects of Punica granatum L. (Punicaceae) fruits alcoholic extract (PGE) on mice exposed to hexavalent chromium [Cr(VI)]. Animals were pretreated with PGE (25, 50 or 75 mg/kg/day) for 10 days and subsequently exposed to a sub-lethal dose of Cr(VI) (30 mg/kg). The frequency of micronucleated polychromatic erythrocytes in the bone marrow was investigated and the Cr(VI) levels were measured in the kidneys, liver and plasm. For the survival analysis, mice were previously treated with PGE for 10 days and exposed to a single lethal dose of Cr(VI) (50 mg/kg). Exposure to a sub-lethal dose of Cr(VI) induced a significant increase in the frequency of micronucleated cells. However, the prophylactic treatment with PGE led to a reduction of 44.5% (25 mg/kg), 86.3% (50 mg/kg) and 64.2% (75 mg/kg) in the incidence of micronuclei. In addition, the 50 mg/kg dose of PGE produced a higher chemoprotective effect, since the survival rate was 90%, when compared to that of the non-treated group. In these animals, reduced amounts of chromium were detected in the biological materials, in comparison with the other groups. Taken together, the results demonstrated that PGE exerts a protective effect against Cr(VI)-induced genotoxicity

    Effect of Fosfomycin on Cyclosporine Nephrotoxicity

    No full text
    Fosfomycin (Fos) has emerged as a potential treatment against multidrug-resistant organisms, however, there has been little work done on its influence on calcineurin inhibitor nephrotoxicity (CIN). This study was designed to evaluate the effect of Fos in combination with cyclosporine (CsA) on CIN. Two sets of experiments were undertaken. In the first, Wistar rats received different doses of Fos: 0, 62.5, 125, 250, and 500 mg/kg. In the second, rats were divided into four groups: control, CsA 15 mg/kg s.c., CsA + fosfomycin 62.5 mg/kg (CsA + LF), and CsA + Fos 500 mg/kg (CsA + HF). CsA was administrated daily for 14 days, whereas Fos administration started on the ninth day followed by two more doses, delivered 48 h apart. The administration of different Fos doses did not alter renal function. In contrast, CsA induced arteriolopathy, hypoperfusion, a reduction in the glomerular filtration rate, and downregulation of eNOS, angiotensinogen, and AT1R mRNA levels. Lower doses of Fos did not modify CIN. Instead, the CsA + HF group exhibited greater hypoperfusion, arteriolopathy, and oxidative stress, and increased mRNA levels of pro-inflammatory cytokines. This study shows that Fos administered by itself at different doses did not cause renal injury, but when it was given repeatedly at high dosages (500 mg/kg) in combination with CsA, it increased CIN through the promotion of greater oxidative stress and renal inflammation

    Role of Endogenous and Exogenous Tocopherols in the Lipid Stability of Marine Oil Systems: A Review

    No full text
    In marine organisms primarily intended for human consumption, the quality of the muscle and the extracted oils may be affected by lipid oxidation during storage, even at low temperatures. This has led to a search for alternatives to maintain quality. In this sense, antioxidant compounds have been used to prevent such lipid deterioration. Among the most used compounds are tocopherols, which, due to their natural origin, have become an excellent alternative to prevent or retard lipid oxidation and maintain the quality of marine products. Tocopherols as antioxidants have been studied both exogenously and endogenously. Exogenous tocopherols are often used by incorporating them into plastic packaging films or adding them directly to fish oil. It has been observed that exogenous tocopherols incorporated in low concentrations maintain the quality of both muscle and the extracted oils during food storage. However, it has been reported that tocopherols applied at higher concentrations act as a prooxidant molecule, probably because their reactions with singlet oxygen may generate free radicals and cause the oxidation of polyunsaturated fatty acids in fish oils. However, when tocopherols are included in a fish diet (endogenous tocopherols), the antioxidant effect on the muscle lipids is more effective due to their incorporation into the membrane lipids, which can help extend the shelf life of seafood by reducing the lipid deterioration that occurs due to antioxidant synergy with other phenolic compounds used supplements in fish muscle. This review focuses on the most important studies in this field and highlights the potential of using tocopherols as antioxidants in marine oils
    corecore