244 research outputs found

    Face-to-face vs. computerized conferences : a controlled experiment. Volume I: Findings

    Get PDF
    This is a report on the first controlled experiment conducted as part of a four year effort to explore the feasibility and effectiveness of using the computer to structure the communication for various types of group tasks. It uses a language called INTERACT, developed as part of this grant effort, to administer all instructions and conduct a group problem solving discussion in a computer conference. The experiment compares the process and outcome of face to face vs. computer mediated group problem solving discussions. The objectives of this experiment are the following basic research questions: To gain quantified and detailed knowledge about the consequences and characteristics of computerized conferencing as a communications mode, as compared to the usual face-to-face discussion mode. To lay the foundation for a subsequent experiment which will seek to alter the process of group communication via computer, in order to improve group performance. To assess the feasibility of using a high level language to conduct automated experiments on group communication and problem solving

    Face-to-face vs. computerized conferences : a controlled experiment, Volume II: Methodological Appendices

    Get PDF
    This is volume II of research report 12. It is comprised of the methodoligical appendices that support volume I

    The Statistics of the Points Where Nodal Lines Intersect a Reference Curve

    Full text link
    We study the intersection points of a fixed planar curve Γ\Gamma with the nodal set of a translationally invariant and isotropic Gaussian random field \Psi(\bi{r}) and the zeros of its normal derivative across the curve. The intersection points form a discrete random process which is the object of this study. The field probability distribution function is completely specified by the correlation G(|\bi{r}-\bi{r}'|) = . Given an arbitrary G(|\bi{r}-\bi{r}'|), we compute the two point correlation function of the point process on the line, and derive other statistical measures (repulsion, rigidity) which characterize the short and long range correlations of the intersection points. We use these statistical measures to quantitatively characterize the complex patterns displayed by various kinds of nodal networks. We apply these statistics in particular to nodal patterns of random waves and of eigenfunctions of chaotic billiards. Of special interest is the observation that for monochromatic random waves, the number variance of the intersections with long straight segments grows like LlnLL \ln L, as opposed to the linear growth predicted by the percolation model, which was successfully used to predict other long range nodal properties of that field.Comment: 33 pages, 13 figures, 1 tabl

    On the Nodal Count Statistics for Separable Systems in any Dimension

    Full text link
    We consider the statistics of the number of nodal domains aka nodal counts for eigenfunctions of separable wave equations in arbitrary dimension. We give an explicit expression for the limiting distribution of normalised nodal counts and analyse some of its universal properties. Our results are illustrated by detailed discussion of simple examples and numerical nodal count distributions.Comment: 21 pages, 4 figure

    Short and Long Range Screening of Optical Singularities

    Full text link
    Screening of topological charges (singularities) is discussed for paraxial optical fields with short and with long range correlations. For short range screening the charge variance in a circular region with radius RR grows linearly with RR, instead of with R2R^{2} as expected in the absence of screening; for long range screening it grows faster than RR: for a field whose autocorrelation function is the zero order Bessel function J_{0}, the charge variance grows as R ln R$. A J_{0} correlation function is not attainable in practice, but we show how to generate an optical field whose correlation function closely approximates this form. The charge variance can be measured by counting positive and negative singularities inside the region A, or more easily by counting signed zero crossings on the perimeter of A. \For the first method the charge variance is calculated by integration over the charge correlation function C(r), for the second by integration over the zero crossing correlation function Gamma(r). Using the explicit forms of C(r) and of Gamma(r) we show that both methods of calculation yield the same result. We show that for short range screening the zero crossings can be counted along a straight line whose length equals P, but that for long range screening this simplification no longer holds. We also show that for realizable optical fields, for sufficiently small R, the charge variance goes as R^2, whereas for sufficiently large R, it grows as R. These universal laws are applicable to both short and pseudo-long range correlation functions

    Counting nodal domains on surfaces of revolution

    Full text link
    We consider eigenfunctions of the Laplace-Beltrami operator on special surfaces of revolution. For this separable system, the nodal domains of the (real) eigenfunctions form a checker-board pattern, and their number νn\nu_n is proportional to the product of the angular and the "surface" quantum numbers. Arranging the wave functions by increasing values of the Laplace-Beltrami spectrum, we obtain the nodal sequence, whose statistical properties we study. In particular we investigate the distribution of the normalized counts νnn\frac{\nu_n}{n} for sequences of eigenfunctions with KnK+ΔKK \le n\le K + \Delta K where K,ΔKNK,\Delta K \in \mathbb{N}. We show that the distribution approaches a limit as K,ΔKK,\Delta K\to\infty (the classical limit), and study the leading corrections in the semi-classical limit. With this information, we derive the central result of this work: the nodal sequence of a mirror-symmetric surface is sufficient to uniquely determine its shape (modulo scaling).Comment: 36 pages, 8 figure
    corecore