9 research outputs found

    Ti6Al4V lattice structures manufactured by electron beam powder bed fusion - microstructural and mechanical characterization based on advanced in situ techniques

    Get PDF
    Powder bed fusion (PBF) processes enable the manufacturing of complex components in a time- and cost-efficient manner. Especially lattice structures are currently focused since they show varying mechanical properties, including different deformation and damage behaviors, which can be used to locally tailor the mechanical behavior. However, the present process-structure-property relationships are highly complex and have to be understood in detail in order to enable an implementation of PBF manufactured lattice structures in safety-relevant applications. Within the present work Ti6Al4V lattice structures were manufactured by electron beam powder bed fusion of metals (PBF-EB/M). Based on the classification of bending- and stretch-dominated deformation behavior, two different lattice types, i.e. body-centered cubic like (BCC-) and face-centered cubic like (F2CCZ) structures were selected. Microstructural features were detected to evaluate if potential different microstructures can occur due to different lattice types and to answer the question if microstructural features might contribute to the mechanical behavior shown in this work. Furthermore, X-ray microfocus computed tomography (ÎĽCT) analysis were carried out to enable a comparison between the computer-aided designed (CAD) and as-built geometry. For mechanical characterization, quasi-static and cyclic tests were used. In particular, the BCC lattice type showed a more ductile material behavior whereby higher stiffness and strength was determined for the F2CCZ lattice type. Additionally, different in-situ measurement techniques such as direct current potential drop system and digital image correlation could be deployed to describe the damage progress both under quasi-static and cyclic loading

    Damage tolerance evaluation of E-PBF manufactured Inconel 718 strut geometries by advanced characterization techniques

    No full text
    By means of electron beam powder bed fusion (E-PBF), highly complex lightweight structures can be manufactured within short process times. Due to the increasing complexity of producible components and the entangled interplay of damage mechanisms, common bulk material properties such as ultimate tensile or fatigue strength are not sufficient to guarantee safe and reliable use in demanding applications. Within this work, the damage tolerance of E-PBF-manufactured Ni-based alloy Inconel 718 (IN 718) strut geometries under uniaxial cyclic loading was investigated supported by several advanced measurement techniques. Based on thermal and electrical measurements, the failure of single struts could reliably be detected, revealing that continuous monitoring is applicable for such complex geometries. Process-induced surface roughness was found to be the main reason for early failure during cyclic loading. Thus, adequate post-processing steps have to be established for complex geometries to significantly improve damage tolerance and, eventually, in-service properties

    Beam powder bed fusion for direct microstructure design – In-depth analysis of prospects and limitations of the multi spot scanning strategy

    No full text
    © This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0

    Ti6Al4V lattice structures manufactured by electron beam powder bed fusion - Microstructural and mechanical characterization based on advanced in situ techniques

    No full text
    Powder bed fusion (PBF) processes enable the manufacturing of complex components in a time- and cost-efficient manner. Especially lattice structures are currently focused since they show varying mechanical properties, including different deformation and damage behaviors, which can be used to locally tailor the mechanical behavior. However, the present process-structure-property relationships are highly complex and have to be understood in detail in order to enable an implementation of PBF manufactured lattice structures in safety-relevant applications. Within the present work Ti6Al4V lattice structures were manufactured by electron beam powder bed fusion of metals (PBF-EB/M). Based on the classification of bending- and stretch-dominated deformation behavior, two different lattice types, i.e. body-centered cubic like (BCC-) and face-centered cubic like (F2CCZ) structures were selected. Microstructural features were detected to evaluate if potential different microstructures can occur due to different lattice types and to answer the question if microstructural features might contribute to the mechanical behavior shown in this work. Furthermore, X-ray microfocus computed tomography (ÎĽCT) analysis were carried out to enable a comparison between the computer-aided designed (CAD) and as-built geometry. For mechanical characterization, quasi-static and cyclic tests were used. In particular, the BCC lattice type showed a more ductile material behavior whereby higher stiffness and strength was determined for the F2CCZ lattice type. Additionally, different in-situ measurement techniques such as direct current potential drop system and digital image correlation could be deployed to describe the damage progress both under quasi-static and cyclic loading
    corecore