116 research outputs found
A signature of dynamic biogeography: enclaves indicate past species replacement
Understanding how species have replaced each other in the past is important to predicting future species turnover. While past species replacement is difficult to detect after the fact, the process may be inferred from present-day distribution patterns. Species with abutting ranges sometimes show a characteristic distribution pattern, where a section of one species range is enveloped by that of the other. Such an enclave could indicate past species replacement: when a species is partly supplanted by a competitor, but a population endures locally while the invading species moves around and past it, an enclave forms. If the two species hybridize and backcross, the receding species is predicted to leave genetic traces within the expanding one under a scenario of species replacement. By screening dozens of genes in hybridizing crested newts, we uncover genetic remnants of the ancestral species, now inhabiting an enclave, in the range of the surrounding invading species. This independent genetic evidence supports the past distribution dynamics we predicted from the enclave. We suggest that enclaves provide a valuable tool in understanding historical species replacement, which is important because a major conservation concern arising from anthropogenic climate change is increased species replacement in the future
Amphibian decline, pond loss and reduced population connectivity under agricultural intensification over a 38 year period
Habitat loss, together with less obvious land-use changes such as intensified farming practice, can have significant adverse impacts on biodiversity. An important factor in determining the ability of species to cope with such changes is their potential to sustain a populations network by dispersal across the landscape. Habitat quality and structure are particularly important for surface-dwelling species with low dispersal abilities, such as amphibians. To assess this ecological function, ponds in a coastal and typically rural area of northern France were surveyed for amphibians in 1974, 1992 and 2011. These repeated surveys yielded different outcomes for different species groups. Three rare species persisted in more or less specialized habitat types. Two moderately common species declined, but kept strongholds in coastal dunes and associated marshes. Five common species with broad ecological niches remained equally widespread. The Northern crested newt declined markedly and the Midwife toad declined dramatically, as did their breeding habitats in vegetated ponds and cattle drinking troughs. One species, the Moor frog, may have gone locally extinct. A model of relative resistance to amphibian dispersal was created for different landscape types, on a scale from 0 (low resistance) to 1 (high resistance). This generated values of 0.23 for pasture, 0.72 for arable and 0.98 for urban and transport. As pasture declined in the study area, while arable and urban/transport infrastructure increased, amphibian dispersal became more difficult. However, dispersal paths proved difficult to evaluate in a patchy landscape like the one surveyed, due to a paucity of spatial signal. Pond loss is a more tractable reason for the observed amphibian species decline than is the quality of intervening terrestrial habitat matrix. In 2011, 22 newly created ponds had species richness in line with pre-existing ponds and this will have counteracted a dwindling metapopulation structure, indicating that habitat creation/restoration can play a valuable role in conservation. The colonization of new ponds may also prove more informative for gauging the potential for amphibian dispersal in the landscape than the preceding decline
Efficient screening for âgenetic pollutionâ in an anthropogenic crested newt hybrid zone
Genetic admixture between endangered native and non-native invasive species poses a complex conservation problem. Decision makers often need to quickly screen large numbers of individuals and distinguish natives from morphologically similar invading species and their genetically admixed offspring. We describe a protocol using the fast and economical Kompetitive Allele Specific PCR (KASP) technology for genotyping on a large scale. We apply this protocol to a case study of hybridization between a native and an invasive crested newt species. Using previously published data, we designed a panel of ten nuclear and one mitochondrial diagnostic SNP markers. We observed only minor differences between KASP and next-generation sequencing data previously produced with the Ion Torrent platform. We briefly discuss practical considerations for tackling the insidious conservation problem of genetic admixture between native and invasive species. The KASP genotyping protocol facilitates policy decision making for the crested newt case and is generally applicable to invasive hybridization with endangered taxa
From descriptive to predictive distribution models: a working example with Iberian amphibians and reptiles
BACKGROUND: Aim of the study was to identify the conditions under which spatial-environmental models can be used for the improved understanding of species distributions, under the explicit criterion of model predictive performance. I constructed distribution models for 17 amphibian and 21 reptile species in Portugal from atlas data and 13 selected ecological variables with stepwise logistic regression and a geographic information system. Models constructed for Portugal were extrapolated over Spain and tested against range maps and atlas data. RESULTS: Descriptive model precision ranged from 'fair' to 'very good' for 12 species showing a range border inside Portugal ('edge species', kappa (k) 0.35â0.89, average 0.57) and was at best 'moderate' for 26 species with a countrywide Portuguese distribution ('non-edge species', k = 0.03â0.54, average 0.29). The accuracy of the prediction for Spain was significantly related to the precision of the descriptive model for the group of edge species and not for the countrywide species. In the latter group data were consistently better captured with the single variable search-effort than by the panel of environmental data. CONCLUSION: Atlas data in presence-absence format are often inadequate to model the distribution of species if the considered area does not include part of the range border. Conversely, distribution models for edge-species, especially those displaying high precision, may help in the correct identification of parameters underlying the species range and assist with the informed choice of conservation measures
Asymmetric Reproductive Isolation between Two Sympatric Annual Killifish with Extremely Short Lifespans
BACKGROUND: Interspecific reproductive isolation is typically achieved by a combination of intrinsic and extrinsic barriers. Behavioural isolating barriers between sympatric, closely related species are often of primary importance and frequently aided by extrinsic factors causing spatial and temporal interspecific separation. Study systems with a severely limited role of extrinsic factors on reproductive isolation may provide valuable insights into how reproductive isolation between sympatric species is maintained. We used no-choice experimental set-up to study reproductive barriers between two closely related sympatric African killifish species, Nothobranchius furzeri and Nothobranchius orthonotus. These fish live in small temporary savannah pools and have complete spatial and temporal overlap in reproductive activities and share a similar ecology. PRINCIPAL FINDINGS: We found that the two species display largely incomplete and asymmetric reproductive isolation. Mating between N. furzeri males and N. orthonotus females was absent under standard experimental conditions and eggs were not viable when fish were forced to mate in a modified experimental setup. In contrast, male N. orthonotus indiscriminately mated with N. furzeri females, the eggs were viable, and offspring successfully hatched. Most spawnings, however, were achieved by male coercion and egg production and embryo survival were low. Behavioural asymmetry was likely facilitated by mating coercion from larger males of N. orthonotus and at relatively low cost to females. Interestingly, the direction of asymmetry was positively associated with asymmetry in post-mating reproductive barriers. SIGNIFICANCE: We showed that, in fish species with a promiscuous mating system and multiple matings each day, selection for strong mate preferences was relaxed. This effect was likely due to the small proportion of resources allocated to each single mating and the high potential cost to females from mating refusal. We highlight and discuss the fact that males of rarer species may often coercively mate with females of a related, more abundant species
Habitat Association and Seasonality in a Mosaic and Bimodal Hybrid Zone between Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae)
Understanding why some hybrid zones are bimodal and others unimodal can aid in identifying barriers to gene exchange following secondary contact. The hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi contains a mix of allopatric parental populations and inter-mingled bimodal and unimodal sympatric populations, and provides an ideal system to examine the roles of local selection and gene flow between populations in maintaining bimodality. However, it is first necessary to confirm, over a larger spatial scale, previously identified associations between population composition and season and habitat. Here we use cline-fitting of one morphological and one song trait along two valley transects, and intervening mountains, to confirm previously identified habitat associations (mountain versus valley) and seasonal changes in population composition. As expected from previous findings of studies on a smaller spatial scale, C. jacobsi dominated mountain habitats and mixed populations dominated valleys, and C. brunneus became more prevalent in August. Controlling for habitat and incorporating into the analysis seasonal changes in cline parameters and the standard errors of parental trait values revealed wider clines than previous studies (best estimates of 6.4 to 24.5 km in our study versus 2.8 to 4.7 km in previous studies) and increased percentage of trait variance explained (52.7% and 61.5% for transects 1 and 2 respectively, versus 17.6%). Revealing such strong and consistent patterns within a complex hybrid zone will allow more focused examination of the causes of variation in bimodality in mixed populations, in particular the roles of local selection versus habitat heterogeneity and gene flow between differentiated populations
GpaXItarl originating from Solanum tarijense is a major resistance locus to Globodera pallida and is localised on chromosome 11 of potato
Resistance to Globodera pallida Rookmaker (Pa3), originating from wild species Solanum tarijense was identified by QTL analysis and can be largely ascribed to one major QTL. GpaXItarl explained 81.3% of the phenotypic variance in the disease test. GpaXItarl is mapped to the long arm of chromosome 11. Another minor QTL explained 5.3% of the phenotypic variance and mapped to the long arm of chromosome 9. Clones containing both QTL showed no lower cyst counts than clones with only GpaXItarl. After Mendelising the phenotypic data, GpaXItarl could be more precisely mapped near markers GP163 and FEN427, thus anchoring GpaXItarl to a region with a known R-gene cluster containing virus and nematode resistance genes
Phylogeography of Aegean green toads (Bufo viridis subgroup): continental hybrid swarm vs. insular diversification with discovery of a new island endemic
BACKGROUND: Debated aspects in speciation research concern the amount of gene flow between incipient species under secondary contact and the modes by which post-zygotic isolation accumulates. Secondary contact zones of allopatric lineages, involving varying levels of divergence, provide natural settings for comparative studies, for which the Aegean (Eastern Mediterranean) geography offers unique scenarios. In Palearctic green toads (Bufo viridis subgroup or Bufotes), Plio-Pleistocene (~â2.6 Mya) diverged species show a sharp transition without contemporary gene flow, while younger lineages, diverged in the Lower-Pleistocene (~â1.9 Mya), admix over tens of kilometers. Here, we conducted a fine-scale multilocus phylogeographic analysis of continental and insular green toads from the Aegean, where a third pair of taxa, involving Mid-Pleistocene diverged (~â1.5 Mya) mitochondrial lineages, earlier tentatively named viridis and variabilis, (co-)occurs. RESULTS: We discovered a new lineage, endemic to Naxos (Central Cyclades), while coastal islands and Crete feature weak genetic differentiation from the continent. In continental Greece, both lineages, viridis and variabilis, form a hybrid swarm, involving massive mitochondrial and nuclear admixture over hundreds of kilometers, without obvious selection against hybrids. CONCLUSIONS: The genetic signatures of insular Aegean toads appear governed by bathymetry and Quaternary sea level changes, resulting in long-term isolation (Central Cyclades: Naxos) and recent land-bridges (coastal islands). Conversely, Crete has been isolated since the end of the Messinian salinity crisis (5.3 My) and Cretan populations thus likely result from human-mediated colonization, at least since Antiquity, from Peloponnese and Anatolia. Comparisons of green toad hybrid zones support the idea that post-zygotic hybrid incompatibilities accumulate gradually over the genome. In this radiation, only one million years of divergence separate a scenario of complete reproductive isolation, from a secondary contact resulting in near panmixia
Toward an Open-Access Global Database for Mapping, Control, and Surveillance of Neglected Tropical Diseases
There is growing interest in the scientific community, health ministries, and other organizations to control and eventually eliminate neglected tropical diseases (NTDs). Control efforts require reliable maps of NTD distribution estimated from appropriate models and survey data on the number of infected people among those examined at a given location. This kind of data is often available in the literature as part of epidemiological studies. However, an open-access database compiling location-specific survey data does not yet exist. We address this problem through a systematic literature review, along with contacting ministries of health, and research institutions to obtain disease data, including details on diagnostic techniques, demographic characteristics of the surveyed individuals, and geographical coordinates. All data were entered into a database which is freely accessible via the Internet (http://www.gntd.org). In contrast to similar efforts of the Global Atlas of Helminth Infections (GAHI) project, the survey data are not only displayed in form of maps but all information can be browsed, based on different search criteria, and downloaded as Excel files for further analyses. At the beginning of 2011, the database included over 12,000 survey locations for schistosomiasis across Africa, and it is continuously updated to cover other NTDs globally
Haldane's rule in the 21st century
Haldane's Rule (HR), which states that 'when in the offspring of two different animal races one sex is absent, rare, or sterile, that sex is the heterozygous (heterogametic) sex', is one of the most general patterns in speciation biology. We review the literature of the past 15 years and find that among the similar to 85 new studies, many consider taxa that traditionally have not been the focus for HR investigations. The new studies increased to nine, the number of 'phylogenetically independent' groups that comply with HR. They continue to support the dominance and faster-male theories as explanations for HR, although due to increased reliance on indirect data (from, for example, differential introgression of cytoplasmic versus chromosomal loci in natural hybrid zones) unambiguous novel results are rare. We further highlight how research on organisms with sex determination systems different from those traditionally considered may lead to more insight in the underlying causes of HR. In particular, haplodiploid organisms provide opportunities for testing specific predictions of the dominance and faster X chromosome theory, and we present new data that show that the faster-male component of HR is supported in hermaphrodites, suggesting that genes involved in male function may evolve faster than those expressed in the female function. Heredity (2011) 107, 95-102; doi:10.1038/hdy.2010.170; published online 12 January 201
- âŠ