1,799 research outputs found

    The effects of provider control of Blue Shield plans : regulatory options / BEBR No. 645

    Get PDF
    Title page includes summary.Includes bibliographical references (p. 30-32)

    Changing patterns of concentration in the meat packing industry

    Get PDF

    Neutron-rich nuclei in cosmic rays and Wolf-Rayet stars

    Get PDF
    Wolf-Rayet stars figure prominently in astrophysical research. As a bonus, they seem to offer, in the recent past, an interesting connection between classical astronomy and high energy astrophysics due to their unusual composition and their huge mechanical power. The material flowing from WC stars (carbon-rich WR stars) contains gas which has been processed through core-helium burning, i.e., considerably enriched into 12C,16O, 22Ne, and 25,26Mg. This composition is reminiscent of the cosmic ray source anomalies. Encouraging agreement is obtained with observation in the mass range 12 A 26 assuming acceleration of wind particles at the shock that delineates the WR cavity, and adequate dilution with normal cosmic rays, but silicon poses

    Utilisation of intensive foraging zones by female Australian fur seals.

    Get PDF
    Within a heterogeneous environment, animals must efficiently locate and utilise foraging patches. One way animals can achieve this is by increasing residency times in areas where foraging success is highest (area-restricted search). For air-breathing diving predators, increased patch residency times can be achieved by altering both surface movements and diving patterns. The current study aimed to spatially identify the areas where female Australian fur seals allocated the most foraging effort, while simultaneously determining the behavioural changes that occur when they increase their foraging intensity. To achieve this, foraging behaviour was successfully recorded with a FastLoc GPS logger and dive behaviour recorder from 29 individual females provisioning pups. Females travelled an average of 118 ± 50 km from their colony during foraging trips that lasted 7.3 ± 3.4 days. Comparison of two methods for calculating foraging intensity (first-passage time and first-passage time modified to include diving behaviour) determined that, due to extended surface intervals where individuals did not travel, inclusion of diving behaviour into foraging analyses was important for this species. Foraging intensity 'hot spots' were found to exist in a mosaic of patches within the Bass Basin, primarily to the south-west of the colony. However, the composition of benthic habitat being targeted remains unclear. When increasing their foraging intensity, individuals tended to perform dives around 148 s or greater, with descent/ascent rates of approximately 1.9 m•s-1 or greater and reduced postdive durations. This suggests individuals were maximising their time within the benthic foraging zone. Furthermore, individuals increased tortuosity and decreased travel speeds while at the surface to maximise their time within a foraging location. These results suggest Australian fur seals will modify both surface movements and diving behaviour to maximise their time within a foraging patch

    Validating accelerometry-derived proxies of energy expenditure using the doubly-labelled water method in the smallest penguin species

    Get PDF
    Acknowledgements We are grateful to Dr Catherine Hambly and Peter Thompson for technical assistance with the isotope analysis for the doubly labelled water measurements. We thank Parks Victoria (in particular, the rangers at Gabo Island and Port Campbell Offices) and Kevin Lotte for logistical support. Funding This project was funded by the Holsworth Wildlife Research Endowment – Equity Trustees Charitable Foundation and the Ecological Society of Australia and Deakin University internal funds.Peer reviewedPublisher PD

    Rethinking Old Thoughts

    Get PDF
    corecore