110 research outputs found
Investigation of electrical currents in the auroral ionosphere
Two papers are presented on the investigation of electrical currents in the auroral ionosphere: (1) The Relationship Between Field-Aligned Current Carried by Suprathermal Electrons, and the Auroral Arc; and (2) Ionospheric Electrical Currents in the Late Evening Plasma Flow Reversal. In the first paper (1), data from four auroral sounding rockets, which directly measured field-aligned currents with partical detectors, are presented. In the second paper (2), data are presented for an instrumented sounding rocket that was launched from Andoya, Norway in January 1977, in the late evening auroral oval
Rocket study of auroral processes
Abstracts are presented of previously published reports analyzing data from three Echo 3 rocket flights. Particle experiments designed for the Terrier-Malmute flight, the Echo 5 flight, and the Norwegian Corbier Ferdinand 50 flight are described and their flight performance evaluated. Theoretical studies on auroral particle precipitation are reviewed according to observations made in three regions of space: (1) the region accessible to rockets and low altitude satellites (few hundred to a few thousand kilometers); (2) the region extending from 4000 to 8000 km (S3-3 satellite range); and (3) near the equatorial plane (geosynchronous satellite measurements). Questions raised about auroral arc formation are considered
An atlas of 10-50 keV solar flare X-rays observed by the OGO satellites, 5 September 1964 to 31 December 1966
Ionization rate profiles from solar flare X rays observed by ion chambers aboard OGO 1 and OGO
Preferential heating of light ions during an ionospheric Ar(+) injection experiment
The Argon Release for Controlled Studies (ARCS) 4 sounding rocket was launched northward into high altitude from Poker Flat Research Range on February 23, 1990. The vehicle crossed geomagnetic field lines containing discrete auroral activity. An instrumented subpayload released 100-eV and 200-eV Ar(+) ion beams sequentially, in a direction largely perpendicular to both the local geomagnetic field and the subpayload spin axis. The instrumented main payload was separated along field lines from the beam emitting subpayload by a distance which increased at a steady rate of approximately 2.4 m/s. Three dimensional mass spectrometric ion observations of ambient H(+) and O(+) ions, obtained on board the main payload, are presented. Main payload electric field observations in the frequency range 0-16 kHz, are also presented. These observations are presented to demonstrate the operation of transverse ion acceleration, which was differential with respect to ion mass, primarily during 100-eV beam operations. The preferential transverse acceleration of ambient H(+) ions, as compared with ambient O(+) ions, during the second, third, fourth, and fifth 100-eV beam operations, is attributed to a resonance among the injected Ar(+) ions, beam-generated lower hybrid waves, and H(+) ions in the tail of the ambient thermal distribution. This work provides experimental support of processes predicted by previously published theory and simulations
Auroral Ion Outflow: Low Altitude Energization
The SIERRA nightside auroral sounding rocket made observations of the origins of ion upflow, at topside F-region altitudes (below 700 km), comparatively large topside plasma densities (above 20 000/cc), and low energies (10 eV). Upflowing ions with bulk velocities up to 2 km/s are seen in conjunction with the poleward edge of a nightside substorm arc. The upflow is limited within the poleward edge to a region (a) of northward convection, (b) where Alfvenic ÂŽ and Pedersen conductivities are well-matched, leading to good ionospheric transmission of Alfvenic power, and (c) of ÂŽ soft electron precipitation (below 100 eV). Models of the effect of the soft precipitation show strong increases in electron temperature, increasing the scale height and initiating ion upflow. Throughout the entire poleward edge, precipitation of moderate-energy (100s of eV) protons and oxygen is also observed. This ion precipitation is interpreted as reflection from a higher-altitude, time-varying field-aligned potential of upgoing transversely heated ion conics seeded by the low altitude upflow
Observation of the solar soft X-ray component; study of its relation to transient and slowly-varying phenomena observed at other wavelengths
Solar X-rays from 8â12 Ă
have been observed with an ion chamber photometer and fluxes derived from the observations after an assumption concerning the spectral distribution. The time variation of the X-ray flux correlates well with the radio flux, plage index, and sunspot number. Comparisons of X-ray and optical events are given; flares seem to produce soft X-rays, but some soft X-ray bursts are apparently not associated with flares. The total energy involved in the soft X-ray bursts may be a significant amount of the total flare radiation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43747/1/11207_2004_Article_BF00150944.pd
Local re-acceleration and a modified thick target model of solar flare electrons
The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts
has become an almost 'Standard Model' of flare impulsive phase energy transport
and radiation. However, it faces various problems in the light of recent data,
particularly the high electron beam density and anisotropy it involves.} {We
consider how photon yield per electron can be increased, and hence fast
electron beam intensity requirements reduced, by local re-acceleration of fast
electrons throughout the HXR source itself, after injection.} {We show
parametrically that, if net re-acceleration rates due to e.g. waves or local
current sheet electric () fields are a significant fraction of
collisional loss rates, electron lifetimes, and hence the net radiative HXR
output per electron can be substantially increased over the CTTM values. In
this local re-acceleration thick target model (LRTTM) fast electron number
requirements and anisotropy are thus reduced. One specific possible scenario
involving such re-acceleration is discussed, viz, a current sheet cascade (CSC)
in a randomly stressed magnetic loop.} {Combined MHD and test particle
simulations show that local fields in CSCs can efficiently
accelerate electrons in the corona and and re-accelerate them after injection
into the chromosphere. In this HXR source scenario, rapid synchronisation and
variability of impulsive footpoint emissions can still occur since primary
electron acceleration is in the high Alfv\'{e}n speed corona with fast
re-acceleration in chromospheric CSCs. It is also consistent with the
energy-dependent time-of-flight delays in HXR features.Comment: 8 pages, 2 figure
First E region observations of mesoscale neutral wind interaction with auroral arcs
We report the first observations of E region neutral wind fields and their interaction with auroral arcs at mesoscale spatial resolution during geomagnetically quiet conditions at Mawson, Antarctica. This was achieved by using a scanning Doppler imager, which can observe thermospheric neutral line-of-sight winds and temperatures simultaneously over a wide field of view. In two cases, the background E region wind field was perpendicular to an auroral arc, which when it appeared caused the wind direction within âŒ50 km of the arc to rotate parallel along the arc, reverting to the background flow direction when the arc disappeared. This was observed under both westward and eastward plasma convection. The wind rotations occurred within 7â16 min. In one case, as an auroral arc propagated from the horizon toward the local zenith, the background E region wind field became significantly weaker but remained unaffected where the arc had not passed through. We demonstrate through modeling that these effects cannot be explained by height changes in the emission layer. The most likely explanation seems to be the greatly enhanced ion drag associated with the increased plasma density and localized ionospheric electric field associated with auroral arcs. In all cases, the F region neutral wind appeared less affected by the auroral arc, although its presence is clear in the data
Strong Magnetic Field Fluctuations within Filamentary Auroral Density Cavities Interpreted as VLF Saucer Sources
The Geoelectrodynamics and Electro-Optical Detection of Electron and SuprathermalIon Currents (GEODESIC) sounding rocket encountered more than 100 filamentary densitycavities associated with enhanced plasma waves at ELF (3 kHz) and VLF (310 kHz)frequencies and at altitudes of 800990 km during an auroral substorm. These cavities weresimilar in size (20 m diameter in most cases) to so-called lower-hybrid cavities (LHCs)observed by previous sounding rockets and satellites; however, in contrast, many of theGEODESIC cavities exhibited up to tenfold enhancements in magnetic wave powerthroughout the VLF band. GEODESIC also observed enhancements of ELF and VLFelectric fields both parallel and perpendicular to the geomagnetic field B0 within cavities,though the VLF E field increases were often not as large proportionally as seen in themagnetic fields. This behavior is opposite to that predicted by previously published theoriesof LHCs based on passive scattering of externally incident auroral hiss. We argue thatthe GEODESIC cavities are active wave generation sites capable of radiating VLF wavesinto the surrounding plasma and producing VLF saucers, with energy supplied by cold,upward flowing electron beams composing the auroral return current. This interpretation issupported by the observation that the most intense waves, both inside and outside cavities,occurred in regions where energetic electron precipitation was largely inhibited orabsent altogether. We suggest that the wave-enhanced cavities encountered by GEODESICwere qualitatively different from those observed by earlier spacecraft because of thefortuitous timing of the GEODESIC launch, which placed the payload at apogee within asubstorm-related return current during its most intense phase, lasting only a few minutes
Solar soft X-rays and solar activity
Peak fluxes of flare-associated 8â12 Ă
X-ray bursts occur at or near the time of the maximum energy content of the soft X-ray source volume. The amplitudes of flare-associated bursts may thus be used as a measure of the energy deposited in the source volume by non-thermal electrons and other processes. In the mean, the soft X-ray burst amplitude is apparently independent of the occurrence of a type III event. This is interpreted to indicate that electrons accelerated by the type III process do not directly participate in establishing the soft X-ray source volume.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43724/1/11207_2004_Article_BF00153386.pd
- âŠ