20,478 research outputs found
Degree of randomness: numerical experiments for astrophysical signals
Astrophysical and cosmological signals such as the cosmic microwave
background radiation, as observed, typically contain contributions of different
components, and their statistical properties can be used to distinguish one
from the other. A method developed originally by Kolmogorov is involved for the
study of astrophysical signals of randomness of various degrees. Numerical
performed experiments based on the universality of Kolmogorov distribution and
using a single scaling of the ratio of stochastic to regular components, reveal
basic features in the behavior of generated signals also in terms of a critical
value for that ratio, thus enable the application of this technique for various
observational datasetsComment: 6 pages, 9 figures; Europhys.Letters; to match the published versio
Expanded mixed multiscale finite element methods and their applications for flows in porous media
We develop a family of expanded mixed Multiscale Finite Element Methods
(MsFEMs) and their hybridizations for second-order elliptic equations. This
formulation expands the standard mixed Multiscale Finite Element formulation in
the sense that four unknowns (hybrid formulation) are solved simultaneously:
pressure, gradient of pressure, velocity and Lagrange multipliers. We use
multiscale basis functions for the both velocity and gradient of pressure. In
the expanded mixed MsFEM framework, we consider both cases of separable-scale
and non-separable spatial scales. We specifically analyze the methods in three
categories: periodic separable scales, - convergence separable scales, and
continuum scales. When there is no scale separation, using some global
information can improve accuracy for the expanded mixed MsFEMs. We present
rigorous convergence analysis for expanded mixed MsFEMs. The analysis includes
both conforming and nonconforming expanded mixed MsFEM. Numerical results are
presented for various multiscale models and flows in porous media with shales
to illustrate the efficiency of the expanded mixed MsFEMs.Comment: 33 page
England and Autism
The history of Autism is a discourse (Waltz 2013), a journey through a disputed landscape, whose territories are alternatively staked by Politics, Education, Society, and Culture. It is diachronic in nature, as the knowledge of the present is built upon the past, but a diachronic that has progressed differently in different states, at different rates as each impact upon each other. Essentially its origins are lost in myth (Frith 1992) but its presence has always been felt in one way or another, even before the concept of autism was framed in the Western psychiatric narrative
First images on the sky from a hyper telescope
We show star images obtained with a miniature ``densified pupil imaging
interferometer'' also called a hyper-telescope. The formation of such images
violates a ``golden rule of imaging interferometers'' which appeared to forbid
the use of interferometric arrangements differing from a Fizeau interferometer.
These produce useless images when the sub-apertures spacing is much wider than
their size, owing to diffraction through the sub-apertures. The hyper-telescope
arrangement solves these problems opening the way towards multi-kilometer
imaging arrays in space. We experimentally obtain an intensity gain of 24 +- 3X
when a densified-pupil interferometer is compared to an equivalent Fizeau-type
interferometer and show images of the double star alpha Gem. The initial
results presented confirm the possibility of directly obtaining high resolution
and high dynamic range images in the recombined focal plane of a large
interferometer if enough elements are used.Comment: 6 pages, LaTeX, standard A&A macros + BibTeX macros. Accepted for
publication in Astronomy and Astrophysics Supplement
The RANLUX generator: resonances in a random walk test
Using a recently proposed directed random walk test, we systematically
investigate the popular random number generator RANLUX developed by Luescher
and implemented by James. We confirm the good quality of this generator with
the recommended luxury level. At a smaller luxury level (for instance equal to
1) resonances are observed in the random walk test. We also find that the
lagged Fibonacci and Subtract-with-Carry recipes exhibit similar failures in
the random walk test. A revised analysis of the corresponding dynamical systems
leads to the observation of resonances in the eigenvalues of Jacobi matrix.Comment: 18 pages with 14 figures, Essential addings in the Abstract onl
High-field vortices in Josephson junctions with alternating critical current density
We study long Josephson junctions with the critical current density
alternating along the junction. New equilibrium states, which we call the field
synchronized or FS states, are shown to exist if the applied field is from
narrow intervals centered around equidistant series of resonant fields, .
The values of are much higher than the flux penetration field, . The
flux per period of the alternating critical current density, , is fixed
for each of the FS states. In the -th FS state the value of is
equal to an integer amount of flux quanta, . Two types of
single Josephson vortices carrying fluxes or/and can exist
in the FS states. Specific stepwise resonances in the current-voltage
characteristics are caused by periodic motion of these vortices between the
edges of the junction.Comment: 4 pages, 5 figure
RF System Upgrades to the Advanced Photon Source Linear Accelerator in Support of the Fel Operation
The S-band linear accelerator, which was built to be the source of particles
and the front end of the Advanced Photon Source injector, is now also being
used to support a low-energy undulator test line (LEUTL) and to drive a
free-electron laser (FEL). The more severe rf stability requirements of the FEL
have resulted in an effort to identify sources of phase and amplitude
instability and implement corresponding upgrades to the rf generation chain and
the measurement system. Test data and improvements implemented and planned are
describedComment: LC 2000 (3 pages, 6 figures
Averaging approximation to singularly perturbed nonlinear stochastic wave equations
An averaging method is applied to derive effective approximation to the
following singularly perturbed nonlinear stochastic damped wave equation \nu
u_{tt}+u_t=\D u+f(u)+\nu^\alpha\dot{W} on an open bounded domain
\,, \,. Here is a small parameter
characterising the singular perturbation, and \,, \,, parametrises the strength of the noise. Some scaling transformations
and the martingale representation theorem yield the following effective
approximation for small , u_t=\D u+f(u)+\nu^\alpha\dot{W} to an error of
\ord{\nu^\alpha}\,.Comment: 16 pages. Submitte
Non-affine geometrization can lead to nonphysical instabilities
Geometrization of dynamics consists of representing trajectories by geodesics
on a configuration space with a suitably defined metric. Previously, efforts
were made to show that the analysis of dynamical stability can also be carried
out within geometrical frameworks, by measuring the broadening rate of a bundle
of geodesics. Two known formalisms are via Jacobi and Eisenhart metrics. We
find that this geometrical analysis measures the actual stability when the
length of any geodesic is proportional to the corresponding time interval. We
prove that the Jacobi metric is not always an appropriate parametrization by
showing that it predicts chaotic behavior for a system of harmonic oscillators.
Furthermore, we show, by explicit calculation, that the correspondence between
dynamical- and geometrical-spread is ill-defined for the Jacobi metric. We find
that the Eisenhart dynamics corresponds to the actual tangent dynamics and is
therefore an appropriate geometrization scheme.Comment: Featured on the Cover of the Journal. 9 pages, 6 figures:
http://iopscience.iop.org/1751-8121/48/7/07510
- …