768 research outputs found

    Inclusive Scattering of Polarized Electrons on Polarized 3He Effects of Final State Interaction and the Magnetic Form Factor of the Neutron

    Get PDF
    Effects of final state interaction on asymmetries in inclusive scattering of polarized electrons on polarized 3He are investigated using consistent 3He bound state wave function and 3N continuum scattering states. Significant effects are found, which influence the extraction of the magnetic neutron form factor from A_T'. The enhancement found experimentally for A_TL' near the 3N breakup threshold, which could not be explained in calculations carried through in plane wave impulse approximation up to now, occurs now also in theory if the full final state interaction is included.Comment: 29 pages, 5 figure

    Precise Neutron Magnetic Form Factors

    Get PDF
    Precise data on the neutron magnetic form factor G_{mn} have been obtained with measurements of the ratio of cross sections of D(e,e'n) and D(e,e'p) up to momentum transfers of Q^2 = 0.9 (GeV/c)^2. Data with typical uncertainties of 1.5% are presented. These data allow for the first time to extract a precise value of the magnetic radius of the neutron.Comment: 10 pages, 2 figures, submitted to Physics Letters

    Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    Get PDF
    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c)^2. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q^2 the deuteron charge form factors G_C and G_Q. They are in good agreement with relativistic calculations and disagree with pQCD predictions.Comment: 5 pages, 4 figures, for associated informations, see http://isnwww.in2p3.fr/hadrons/t20/t20_ang.html clarification about several topics, one figure has been had, extraction of form factors use AQ interpolation in our Q2 range onl

    A precise measurement of the deuteron elastic structure function A(Q^2)

    Get PDF
    The A(Q^2) structure function in elastic electron-deuteron scattering was measured at six momentum transfers Q^2 between 0.66 and 1.80 (GeV/c)^2 in Hall C at Jefferson Laboratory. The scattered electrons and recoil deuterons were detected in coincidence, at a fixed deuteron angle of 60.5 degrees. These new precise measurements resolve discrepancies between older sets of data. They put significant constraints on existing models of the deuteron electromagnetic structure, and on the strength of isoscalar meson exchange currents.Comment: 3 LaTeX pages plus 2 PS figure

    Large Momentum Transfer Measurements of the Deuteron Elastic Structure Function A(Q^2) at Jefferson Laboratory

    Full text link
    The deuteron elastic structure function A(Q^2) has been extracted in the Q^2 range 0.7 to 6.0 (GeV/c)^2 from cross section measurements of elastic electron-deuteron scattering in coincidence using the Hall A Facility of Jefferson Laboratory. The data are compared to theoretical models based on the impulse approximation with inclusion of meson-exchange currents, and to predictions of quark dimensional scaling and perturbative quantum chromodynamicsComment: Submitted to Physical Review Letter

    Nucleon Charge and Magnetization Densities from Sachs Form Factors

    Full text link
    Relativistic prescriptions relating Sachs form factors to nucleon charge and magnetization densities are used to fit recent data for both the proton and the neutron. The analysis uses expansions in complete radial bases to minimize model dependence and to estimate the uncertainties in radial densities due to limitation of the range of momentum transfer. We find that the charge distribution for the proton is significantly broad than its magnetization density and that the magnetization density is slightly broader for the neutron than the proton. The neutron charge form factor is consistent with the Galster parametrization over the available range of Q^2, but relativistic inversion produces a softer radial density. Discrete ambiguities in the inversion method are analyzed in detail. The method of Mitra and Kumari ensures compatibility with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have been added and several discussions have been clarified with no significant changes to the conclusions. Now contains 47 pages including 21 figures and 2 table

    The ratio of proton's electric to magnetic form factors measured by polarization transfer

    Full text link
    The ratio of the proton's elastic electromagnetic form factors was obtained by measuring the transverse and longitudinal polarizations of recoiling protons from the elastic scattering of polarized electrons with unpolarized protons. The ratio of the electric to magnetic form factor is proportional to the ratio of the transverse to longitudinal recoil polarizations. The ratio was measured over a range of four-momentum transfer squared between 0.5 and 3.5 GeV-squared. Simultaneous measurement of transverse and longitudinal polarizations in a polarimeter provides good control of the systematic uncertainty. The results for the ratio of the proton's electric to magnetic form factors show a systematic decrease with increasing four momentum squared, indicating for the first time a marked difference in the spatial distribution of charge and magnetization currents in the proton.Comment: 5 pages, 2 figures, version of paper after corrections due to referees comments and shortened by removing one figure for Physical Review Letter

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE
    • …
    corecore