3,542 research outputs found

    Analysis of Published Criteria for Clinically Inactive Disease in a Large Juvenile Dermatomyositis Cohort Shows That Skin Disease Is Underestimated

    Get PDF
    The Pediatric Rheumatology International Trials Organisation (PRINTO) recently published criteria for classification of patients with juvenile dermatomyositis (DM) as having clinically inactive disease. The criteria require that at least 3 of 4 conditions be met, i.e., creatine kinase level ≀150 units/liter, Childhood Myositis Assessment Scale score β‰₯48, Manual Muscle Testing in 8 muscles score β‰₯78, and physician's global assessment of overall disease activity (PGA) ≀0.2. The present study was undertaken to test these criteria in a UK cohort of patients with juvenile DM

    Jet coherence in QCD media: the antenna radiation spectrum

    Get PDF
    We study the radiation of a highly energetic partonic antenna in a colored state traversing a dense QCD medium. Resumming multiple scatterings of all involved constituents with the medium we derive the general gluon spectrum which encompasses both longitudinal color coherence between scattering centers in the medium, responsible for the well known Landau-Pomeranchuk-Migdal (LPM) effect, and transverse color coherence between partons inside a jet, leading, in vacuum, to angular ordering of the parton shower. We discuss shortly the onset of transverse decoherence which is reached in opaque media. In this regime, the spectrum consists of independent radiation off the antenna constituents.Comment: 15 pages, 2 figures, paper shortened and partly rewritten, references added, results unchange

    Comparison of the Utility and Validity of Three Scoring Tools to Measure Skin Involvement in Patients With Juvenile Dermatomyositis

    Get PDF
    OBJECTIVE: To compare the abbreviated Cutaneous Assessment Tool (CAT), Disease Activity Score (DAS), and Myositis Intention to Treat Activity Index (MITAX) and correlate them with the physician's 10-cm skin visual analog scale (VAS) in order to define which tool best assesses skin disease in patients with juvenile dermatomyositis. METHODS: A total of 71 patients recruited to the UK Juvenile Dermatomyositis Cohort and Biomarker Study were included and assessed for skin disease using the CAT, DAS, MITAX, and skin VAS. The Childhood Myositis Assessment Scale (CMAS), manual muscle testing of 8 groups (MMT8), muscle enzymes, inflammatory markers, and physician's global VAS were recorded. Relationships were evaluated using Spearman's correlations and predictors with linear regression. Interrater reliability was assessed using intraclass correlation coefficients. RESULTS: All 3 tools showed correlation with the physician's global VAS and skin VAS, with DAS skin showing the strongest correlation with skin VAS. DAS skin and CAT activity were inversely correlated with CMAS and MMT8, but these correlations were moderate. No correlations were found between the skin tools and inflammatory markers or muscle enzymes. DAS skin and CAT were the quickest to complete (mean ± SD 0.68 ± 0.1 minutes and 0.63 ± 0.1 minutes, respectively). CONCLUSION: The 3 skin tools were quick and easy to use. The DAS skin correlated best with the skin VAS. The addition of CAT in a bivariate model containing the physician's global VAS was a statistically significant estimator of skin VAS score. We propose that there is scope for a new skin tool to be devised and tested, which takes into account the strengths of the 3 existing tools

    Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition

    Get PDF
    This paper is a comprehensive review of the state-of-knowledge in the field of radiation effects in glasses that are to be used for the immobilization of high-level nuclear waste and plutonium disposition. The current status and issues in the area of radiation damage processes, defect generation, microstructure development, theoretical methods and experimental methods ase reviewed. Questions of fundamental and technological interest that offer opportunities for research are identified

    A New Ant Species of the Genus Tetramorium Mayr, 1855 (Hymenoptera: Formicidae) from Saudi Arabia, with a Revised Key to the Arabian Species

    Get PDF
    Tetramorium amalae sp. n. is described and illustrated from Saudi Arabia based on two worker caste specimens collected in Al Bahah region. The new species belongs to the T. shilohense group and appears to be closely related to T. dysderke Bolton from Nigeria. T. amalae is distinguished by having well-developed frontal carinae, smaller eyes, greater head length and width, greater pronotal width, and the petiole node is longer than broad. Tetramorium latinode Collingwood & Agosti is recorded for the first time from Saudi Arabia and for only the second time since the original description. The worker caste of T. latinode is redescribed and illustrated using scanning electron micrographs to facilitate recognition and the gyne is described for the first time with observations given on species relationships, biology and habitat. A revised key to the nineteen Tetramorium species recorded from Arabian Peninsula based on worker castes is provided. Tetramorium bicarinatum (Nylander) is recorded for the first time from Saudi Arabia. It is suggested that T. amalae and T. latinode are endemic to the Arabian Peninsula

    Assessing the ability of substrate mapping techniques to guide ventricular tachycardia ablation using computational modelling

    Get PDF
    BACKGROUND: Identification of targets for ablation of post-infarction ventricular tachycardias (VTs) remains challenging, often requiring arrhythmia induction to delineate the reentrant circuit. This carries a risk for the patient and may not be feasible. Substrate mapping has emerged as a safer strategy to uncover arrhythmogenic regions. However, VT recurrence remains common. GOAL: To use computer simulations to assess the ability of different substrate mapping approaches to identify VT exit sites. METHODS: A 3D computational model of the porcine post-infarction heart was constructed to simulate VT and paced rhythm. Electroanatomical maps were constructed based on endocardial electrogram features and the reentry vulnerability index (RVI - a metric combining activation (AT) and repolarization timings to identify tissue susceptibility to reentry). Since scar transmurality in our model was not homogeneous, parameters derived from all signals (including dense scar regions) were used in the analysis. Potential ablation targets obtained from each electroanatomical map during pacing were compared to the exit site detected during VT mapping. RESULTS: Simulation data showed that voltage cut-offs applied to bipolar electrograms could delineate the scar, but not the VT circuit. Electrogram fractionation had the highest correlation with scar transmurality. The RVI identified regions closest to VT exit site but was outperformed by AT gradients combined with voltage cut-offs. The performance of all metrics was affected by pacing location. CONCLUSIONS: Substrate mapping could provide information about the infarct, but the directional dependency on activation should be considered. Activation-repolarization metrics have utility in safely identifying VT targets, even with non-transmural scars

    Methods of Isolation and Analysis of TREG Immune Infiltrates from Injured and Dystrophic Skeletal Muscle

    Get PDF
    The immune infiltrate present in acutely injured or dystrophic skeletal muscle has been shown to play an important role in the process of muscle regeneration. Our work has described, for the first time, muscle regulatory T cells (Tregs), a unique population in phenotype and function capable of promoting skeletal muscle repair. Herein, we describe the methods we have optimized to study muscle Tregs, including their isolation from injured muscle, immuno-labeling for analysis/separation by flow cytometry, and measurement of their proliferation status

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer Science + Business Media, LLC 2008Background - Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model. Methods - Three crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded. Results - The leak pressures observed for non-crosslinked NCEM (137.8 ± 22.3 mmHg), crosslinked XCEM0005 (109.1 ± 14.1 mmHg), XCEM001 (150.1 ± 16.0 mmHg), XCEM0033 (98.8 ± 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 ± 10.8 mmHg) and SIS (one and four layers) (62.6 ± 11.8 and 57.6 ± 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 ± 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure). Conclusions - These findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.Enterprise Irelan
    • …
    corecore