818 research outputs found

    Error analysis of a space-time finite element method for solving PDEs on evolving surfaces

    Get PDF
    In this paper we present an error analysis of an Eulerian finite element method for solving parabolic partial differential equations posed on evolving hypersurfaces in Rd\mathbb{R}^d, d=2,3d=2,3. The method employs discontinuous piecewise linear in time -- continuous piecewise linear in space finite elements and is based on a space-time weak formulation of a surface PDE problem. Trial and test surface finite element spaces consist of traces of standard volumetric elements on a space-time manifold resulting from the evolution of a surface. We prove first order convergence in space and time of the method in an energy norm and second order convergence in a weaker norm. Furthermore, we derive regularity results for solutions of parabolic PDEs on an evolving surface, which we need in a duality argument used in the proof of the second order convergence estimate

    Trace Finite Element Methods for PDEs on Surfaces

    Full text link
    In this paper we consider a class of unfitted finite element methods for discretization of partial differential equations on surfaces. In this class of methods known as the Trace Finite Element Method (TraceFEM), restrictions or traces of background surface-independent finite element functions are used to approximate the solution of a PDE on a surface. We treat equations on steady and time-dependent (evolving) surfaces. Higher order TraceFEM is explained in detail. We review the error analysis and algebraic properties of the method. The paper navigates through the known variants of the TraceFEM and the literature on the subject

    A trace finite element method for a class of coupled bulk-interface transport problems

    Get PDF
    In this paper we study a system of advection-diffusion equations in a bulk domain coupled to an advection-diffusion equation on an embedded surface. Such systems of coupled partial differential equations arise in, for example, the modeling of transport and diffusion of surfactants in two-phase flows. The model considered here accounts for adsorption-desorption of the surfactants at a sharp interface between two fluids and their transport and diffusion in both fluid phases and along the interface. The paper gives a well-posedness analysis for the system of bulk-surface equations and introduces a finite element method for its numerical solution. The finite element method is unfitted, i.e., the mesh is not aligned to the interface. The method is based on taking traces of a standard finite element space both on the bulk domains and the embedded surface. The numerical approach allows an implicit definition of the surface as the zero level of a level-set function. Optimal order error estimates are proved for the finite element method both in the bulk-surface energy norm and the L2L^2-norm. The analysis is not restricted to linear finite elements and a piecewise planar reconstruction of the surface, but also covers the discretization with higher order elements and a higher order surface reconstruction

    Bs Mixing and Electric Dipole Moments in MFV

    Full text link
    We analyze the general structure of four-fermion operators capable of introducing CP-violation preferentially in Bs mixing within the framework of Minimal Flavor Violation. The effect requires a minimum of O(Yu^4 Yd^4) Yukawa insertions, and at this order we find a total of six operators with different Lorentz, color, and flavor contractions that lead to enhanced Bs mixing. We then estimate the impact of these operators and of their close relatives on the possible sizes of electric dipole moments (EDMs) of neutrons and heavy atoms. We identify two broad classes of such operators: those that give EDMs in the limit of vanishing CKM angles, and those that require quark mixing for the existence of non-zero EDMs. The natural value for EDMs from the operators in the first category is up to an order of magnitude above the experimental upper bounds, while the second group predicts EDMs well below the current sensitivity level. Finally, we discuss plausible UV-completions for each type of operator.Comment: 11 pages; v2: references adde

    A Trace Finite Element Method for Vector-Laplacians on Surfaces

    Full text link
    We consider a vector-Laplace problem posed on a 2D surface embedded in a 3D domain, which results from the modeling of surface fluids based on exterior Cartesian differential operators. The main topic of this paper is the development and analysis of a finite element method for the discretization of this surface partial differential equation. We apply the trace finite element technique, in which finite element spaces on a background shape-regular tetrahedral mesh that is surface-independent are used for discretization. In order to satisfy the constraint that the solution vector field is tangential to the surface we introduce a Lagrange multiplier. We show well-posedness of the resulting saddle point formulation. A discrete variant of this formulation is introduced which contains suitable stabilization terms and is based on trace finite element spaces. For this method we derive optimal discretization error bounds. Furthermore algebraic properties of the resulting discrete saddle point problem are studied. In particular an optimal Schur complement preconditioner is proposed. Results of a numerical experiment are included
    • …
    corecore