4 research outputs found

    Active Information Gathering for Long-Horizon Navigation Under Uncertainty by Learning the Value of Information

    Full text link
    We address the task of long-horizon navigation in partially mapped environments for which active gathering of information about faraway unseen space is essential for good behavior. We present a novel planning strategy that, at training time, affords tractable computation of the value of information associated with revealing potentially informative regions of unseen space, data used to train a graph neural network to predict the goodness of temporally-extended exploratory actions. Our learning-augmented model-based planning approach predicts the expected value of information of revealing unseen space and is capable of using these predictions to actively seek information and so improve long-horizon navigation. Across two simulated office-like environments, our planner outperforms competitive learned and non-learned baseline navigation strategies, achieving improvements of up to 63.76% and 36.68%, demonstrating its capacity to actively seek performance-critical information.Comment: Submitted at IROS'24. arXiv admin note: text overlap with arXiv:2307.1450

    Improving Reliable Navigation under Uncertainty via Predictions Informed by Non-Local Information

    Full text link
    We improve reliable, long-horizon, goal-directed navigation in partially-mapped environments by using non-locally available information to predict the goodness of temporally-extended actions that enter unseen space. Making predictions about where to navigate in general requires non-local information: any observations the robot has seen so far may provide information about the goodness of a particular direction of travel. Building on recent work in learning-augmented model-based planning under uncertainty, we present an approach that can both rely on non-local information to make predictions (via a graph neural network) and is reliable by design: it will always reach its goal, even when learning does not provide accurate predictions. We conduct experiments in three simulated environments in which non-local information is needed to perform well. In our large scale university building environment, generated from real-world floorplans to the scale, we demonstrate a 9.3\% reduction in cost-to-go compared to a non-learned baseline and a 14.9\% reduction compared to a learning-informed planner that can only use local information to inform its predictions.Comment: IROS 202
    corecore