11 research outputs found

    Huntington disease update

    No full text
    The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene (HTT)\it (HTT) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease‐modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely HTT\it HTT transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified cis\it cis- (DNA repair genes) and trans\it trans- (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders

    Cholecystokinin A receptor (CCKAR) gene variation is associated with language lateralization

    No full text
    Schizophrenia is a psychiatric disorder associated with atypical handedness and language lateralization. However, the molecular mechanisms underlying these functional changes are still poorly understood. Therefore, the present study was aimed at investigating whether variation in schizophrenia-related genes modulates individual lateralization patterns. To this end, we genotyped 16 single nucleotide polymorphisms that have previously been linked to schizophrenia on a meta-analysis level in a sample of 444 genetically unrelated healthy participants and examined the association of these polymorphisms with handedness, footedness and language lateralization. We found a significant association of the cholecystokinin-A receptor (CCKAR)\textit {(CCKAR)} gene variation rs1800857 and language lateralization assessed using the dichotic listening task. Individuals carrying the schizophrenia risk allele C of this polymorphism showed a marked reduction of the typical left-hemispheric dominance for language processing. Since the cholecystokinin A receptor is involved in dopamine release in the central nervous system, these findings suggest that genetic variation in this receptor may modulate language lateralization due to its impact on dopaminergic pathways

    Frequency of SCA8, SCA10, SCA12, SCA36, FXTAS\textit {SCA8, SCA10, SCA12, SCA36, FXTAS} and C9orf72\it C9orf72 repeat expansions in SCA patients negative for the most common SCA subtypes

    No full text
    Background:\textbf {Background:} Spinocerebellar ataxia (SCA) subtypes are often caused by expansions in non-coding regions of genes like SCA8, SCA10, SCA12\textit {SCA8, SCA10, SCA12} and SCA36\it {SCA36}. Other ataxias are known to be associated with repeat expansions such as fragile X-associated tremor ataxia syndrome (FXTAS) or expansions in the C9orf72\it C9orf72 gene. When no mutation has been identified in the aforementioned genes next-generation sequencing (NGS)-based diagnostics may also be applied. In order to define an optimal diagnostic strategy, more information about the frequency and phenotypic characteristics of rare repeat expansion disorders associated with ataxia should be at hand. Methods:\textbf {Methods:} We analyzed a consecutive cohort of 440 German unrelated patients with symptoms of cerebellar ataxia, dysarthria and other unspecific symptoms who were referred to our center for SCA diagnostics. They showed alleles in the normal range for the most common SCA subtypes SCA1-3, SCA6, SCA7 and SCA17. These patients were screened for expansions causing SCA8, SCA10, SCA12, SCA36 and FXTAS as well as for the pathogenic hexanucleotide repeat in the C9orf72\it C9orf72 gene. Results:\textbf {Results:} Expanded repeats for SCA10, SCA12 or SCA36 were not identified in the analyzed patients. Five patients showed expanded SCA8 CTA/CTG alleles with 92-129 repeats. One 51-year-old male with unclear dementia symptoms was diagnosed with a large GGGGCC repeat expansion in C9orf72\it C9orf72. The analysis of the fragile X mental retardation 1 gene (FMR1)\textit {(FMR1)} revealed one patient with a premutation (>50 CGG repeats) and seven patients with alleles in the grey zone (41 to 54 CGG repeats). Conclusions:\textbf {Conclusions:} Altogether five patients showed 92 or more SCA8 CTA/CTG combined repeats. Our results support the assumption that smaller FMR1\it FMR1 gene expansions could be associated with the risk of developing neurological signs. The results do not support genetic testing for C9orf72\it C9orf72 expansion in ataxia patients

    A large-scale estimate on the relationship between language and motor lateralization

    No full text
    Human language is dominantly processed in the left cerebral hemisphere in most of the population. While several studies have suggested that there are higher rates of atypical right-hemispheric language lateralization in left-/mixed-handers, an accurate estimate of this association from a large sample is still missing. In this study, we comprised data from 1,554 individuals sampled in three previous studies in which language lateralization measured via dichotic listening, handedness and footedness were assessed. Overall, we found a right ear advantage indicating typical left-hemispheric language lateralization in 82.1% of the participants. While we found significantly more left-handed individuals with atypical language lateralization on the categorical level, we only detected a very weak positive correlation between dichotic listening lateralization quotients (LQs) and handedness LQs using continuous measures. Here, only 0.4% of the variance in language lateralization were explained by handedness. We complemented these analyses with Bayesian statistics and found no evidence in favor of the hypothesis that language lateralization and handedness are related. Footedness LQs were not correlated with dichotic listening LQs, but individuals with atypical language lateralization also exhibited higher rates of atypical footedness on the categorical level. We also found differences in the extent of language lateralization between males and females with males exhibiting higher dichotic listening LQs indicating more left-hemispheric language processing. Overall, these findings indicate that the direct associations between language lateralization and motor asymmetries are much weaker than previously assumed with Bayesian correlation analyses even suggesting that they do not exist at all. Furthermore, sex differences seem to be present in language lateralization when the power of the study is adequate suggesting that endocrinological processes might influence this phenotype

    Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington's disease

    No full text
    Huntington's disease (HD) is an autosomal dominantly inherited progressive neurodegenerative disease. The exact sequel of events finally resulting in neurodegeneration is only partially understood and there is no established protective treatment so far. Some lines of evidence speak for the contribution of oxidative stress to neuronal tissue damage. The fumaric acid ester dimethylfumarate (DMF) is a new disease modifying therapy currently in phase III studies for relapsing-remitting multiple sclerosis. DMF potentially exerts neuroprotective effects via induction of the transcription factor "nuclear factor E2-related factor 2" (Nrf2) and detoxification pathways. Thus, we investigated here the therapeutic efficacy of DMF in R6/2 and YAC128 HD transgenic mice which mimic many aspects of HD and are characterized by an enhanced generation of free radicals in neurons. Treatment with DMF significantly prevented weight loss in R6/2 mice between postnatal days 80–90. At the same time, DMF treatment led to an attenuated motor impairment as measured by the clasping score. Average survival in the DMF group was 100.5 days vs. 94.0 days in the placebo group. In the histological analysis on day 80, DMF treatment resulted in a significant preservation of morphologically intact neurons in the striatum as well as in the motor cortex. DMF treatment resulted in an increased Nrf2 immunoreactivity in neuronal subpopulations, but not in astrocytes. These beneficial effects were corroborated in YAC128 mice which, after one year of DMF treatment, also displayed reduced dyskinesia as well as a preservation of neurons. In conclusion, DMF may exert beneficial effects in mouse models of HD. Given its excellent side effect profile, further studies with DMF as new therapeutic approach in HD and other neurodegenerative diseases are warranted

    Endocannabinergic modulation of central serotonergic activity in healthy human volunteers

    No full text
    Background\bf Background The serotonergic and the endocannabinoid system are involved in the etiology of depression. Depressive patients exhibit low serotonergic activity and decreased level of the endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2AG). Since the cannabinoid (CB) 1 receptor is activated by endogenous ligands such as AEA and 2AG, whose concentration are controlled by the fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, respectively, we investigated the effects on serotonergic utilization. In this study, we investigated the impact of the rs1049353 single-nucleotide polymorphism (SNP) of the cannabinoid receptor 1 (CNR1)\it (CNR1) gene, which codes the endocannabinoid CB1 receptor, and the rs324420 SNP of the FAAH\it FAAH gene on the serotonergic and endocannabinoid system in 59 healthy volunteers. Methods\bf Methods Serotonergic activity was measured by loudness dependence of auditory-evoked potentials (LDAEP). Plasma concentrations of AEA, 2AG and its inactive isomer 1AG were determined by mass spectrometry. Genotyping of two SNPs (rs1049353, rs344420)\textit {(rs1049353, rs344420)} was conducted by polymerase chain reaction (PCR) and differential enzymatic analysis with the PCR restriction fragment length polymorphism method. Results\bf Results Genotype distributions by serotonergic activity or endocannabinoid concentration showed no differences. However, after detailed consideration of the CNR1\it CNR1-A-allele-carriers, a reduced AEA (A-allele-carrier M = 0.66\textit {M = 0.66}, SD = 0.24\it 0.24; GG genotype M = 0.72\textit {M = 0.72}, SD = 0.24\it 0.24) and 2AG (A-allele-carriers M = 0.70\textit {M = 0.70}, SD = 0.33\it 0.33; GG genotype M = 1.03, SD = 0.83\it 0.83) plasma concentration and an association between the serotonergic activity and the concentrations of AEA and 2AG has been observed. Conclusions\bf Conclusions Our results suggest that carriers of the CNR1-A allele may be more susceptible to developing depression

    PCSK6\it PCSK6 VNTR polymorphism is associated with degree of handedness but not direction of handedness

    No full text
    Although the left and right human cerebral hemispheres differ both functionally and anatomically, the mechanisms that underlie the establishment of these hemispheric specializations, as well as their physiological and behavioral implications, remain largely unknown. Since cerebral asymmetry is strongly correlated with handedness, and handedness is assumed to be influenced by a number of genetic and environmental factors, we performed an association study of LRRTM1\it LRRTM1 rs6733871 and a number of polymorphisms in PCSK6\it PCSK6 and different aspects of handedness assessed with the Edinburgh handedness inventory in a sample of unrelated healthy adults (n = 1113). An intronic 33bp variable-number tandem repeat (VNTR) polymorphism in PCSK6 (rs10523972) shows a significant association (significance threshold: p<0.0025, adjusted for multiple comparisons) with a handedness category comparison (P\it P = 0.0005) and degree of handedness (P\it P = 0.001). These results provide further evidence for the role of PCSK6\it PCSK6 as candidate for involvement in the biological mechanisms that underlie the establishment of normal brain lateralization and thus handedness and support the assumption that the degree of handedness, instead the direction, may be the more appropriate indicator of cerebral organization

    Handedness and the X chromosome

    No full text
    Prenatal androgen exposure has been suggested to be one of the factors influencing handedness, making the androgen receptor gene (AR) a likely candidate gene for individual differences in handedness. Here, we examined the relationship between the length of the CAG-repeat in AR and different handedness phenotypes in a sample of healthy adults of both sexes (n = 1057). Since AR is located on the X chromosome, statistical analyses in women heterozygous for CAG-repeat lengths are complicated by X chromosome inactivation. We thus analyzed a sample of women that were homozygous for the CAG-repeat length (n = 77). Mixed-handedness in men was significantly associated with longer CAG-repeat blocks and women homozygous for longer CAG-repeats showed a tendency for stronger left-handedness. These results suggest that handedness in both sexes is associated with the AR CAG-repeat length, with longer repeats being related to a higher incidence of non-right-handedness. Since longer CAG-repeat blocks have been linked to less efficient AR function, these results implicate that differences in AR signaling in the developing brain might be one of the factors that determine individual differences in brain lateralization

    Genetic variation in dopamine availability modulates the self-reported level of action control in a sex-dependent manner

    No full text
    Although procrastination is a widespread phenomenon with significant influence on our personal and professional life, its genetic foundation is somewhat unknown. An important factor that influences our ability to tackle specific goals directly instead of putting them off is our ability to initiate cognitive, motivational and emotional control mechanisms, so-called metacontrol. These metacontrol mechanisms have been frequently related to dopaminergic signaling. To gain deeper insight into the genetic components of procrastination, we examined whether genetically induced differences in the dopaminergic system are associated with interindividual differences in trait-like procrastination, measured as decision-related action control (AOD). Analyzing the data of 278 healthy adults, we found a sex-dependent effect of TH genotype on AOD. Interestingly, only in women, T-allele carriers showed lower AOD values and were therefore more likely to procrastinate. Additionally, we investigated whether differences in the morphology and functional connectivity of the amygdala that were previously associated with AOD happen to be related to differences in the TH genotype and thus to differences in the dopaminergic system. However, there was no significant amygdala volume or connectivity difference between the TH genotype groups. Therefore, this study is the first to suggest that genetic, anatomical and functional differences affect trait-like procrastination independently

    Polygenic scores for handedness and their association with asymmetries in brain structure

    No full text
    Handedness is the most widely investigated motor preference in humans. The genetics of handedness and especially the link between genetic variation, brain structure, and right-left preference have not been investigated in detail. Recently, several well-powered genome-wide association studies (GWAS) on handedness have been published, significantly advancing the understanding of the genetic determinants of left and right-handedness. In the present study, we estimated polygenic scores (PGS) of handedness-based on the GWAS by de Kovel and Francks (Sci Rep 9: 5986, 2019) in an independent validation cohort (n\it n = 296). PGS reflect the sum effect of trait-associated alleles across many genetic loci. For the first time, we could show that these GWAS-based PGS are significantly associated with individual handedness lateralization quotients in an independent validation cohort. Additionally, we investigated whether handedness-derived polygenic scores are associated with asymmetries in gray matter macrostructure across the whole brain determined using magnetic resonance imaging. None of these associations reached significance after correction for multiple comparisons. Our results implicate that PGS obtained from large-scale handedness GWAS are significantly associated with individual handedness in smaller validation samples with more detailed phenotypic assessment
    corecore