18 research outputs found
An overview of airborne measurement in Nepal – Part 1: Vertical profile of aerosol size, number, spectral absorption, and meteorology
The paper provides an overview of an airborne measurement campaign with a microlight aircraft over the Pokhara Valley region, Nepal, a metropolitan region in the central Himalayan foothills. This is the first aerial measurement in the central Himalayan foothill region, one of the polluted but relatively poorly sampled regions of the world. Conducted in two phases (in May 2016 and December 2016–January 2017), the goal of the overall campaign was to quantify the vertical distribution of aerosols over a polluted mountain valley in the Himalayan foothills, as well as to investigate the extent of regional transport of emissions into the Himalayas. This paper summarizes results from the first phase where test flights were conducted in May 2016 (pre-monsoon), with the objective of demonstrating the potential of airborne measurements in the region using a portable instrument package (size with housing case: 0.45 m × 0.25 m × 0.25 m, 15 kg) onboard an ultralight aircraft (IKARUS-C42). A total of five sampling test flights were conducted (each lasting for 1–1.5 h) in the Pokhara Valley to characterize vertical profiles of aerosol properties such as aerosol number and size distribution (0.3–2 µm), total particle concentration (>14 nm), aerosol absorption (370–950 nm), black carbon (BC), and meteorological variables. Although some interesting observations were made during the test flight, the study is limited to a few days (and only a few hours of flight in total) and thus the analysis presented may not represent the entire pollution–meteorology interaction found in the Pokhara Valley.
The vertical profiles of aerosol species showed decreasing concentrations with altitude (815 to 4500 m a.s.l.); a steep concentration gradient below 2000 m a.s.l. in the morning; and mixed profiles (up to ca. 4000 m a.s.l.) in the afternoon. The near-surface (<1000 m a.s.l.) BC concentrations observed in the Pokhara Valley were much lower than pre-monsoon BC concentrations in the Kathmandu Valley, and similar in range to Indo-Gangetic Plain (IGP) sites such as Kanpur in India. The sampling test flight also detected an elevated polluted aerosol layer (around 3000 m a.s.l.) over the Pokhara Valley, which could be associated with the regional transport. The total aerosol and black carbon concentration in the polluted layer was comparable with the near-surface values. The elevated polluted layer was also characterized by a high aerosol extinction coefficient (at 550 nm) and was identified as smoke and a polluted dust layer. The observed shift in the westerlies (at 20–30∘ N) entering Nepal during the test flight period could be an important factor for the presence of elevated polluted layers in the Pokhara Valle
Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter and sulfur dioxide from vehicles and brick kilns and their impacts on air quality in the Kathmandu Valley, Nepal
Air pollution is one of the most pressing environmental issues in the Kathmandu Valley, where the capital city of Nepal is located. We estimated emissions from two of the major source types in the valley (vehicles and brick kilns) and analyzed the corresponding impacts on regional air quality. First, we estimated the on-road vehicle emissions in the valley using the International Vehicle Emissions (IVE) model with local emissions factors and the latest available data for vehicle registration. We also identified the locations of the brick kilns in the Kathmandu Valley and developed an emissions inventory for these kilns using emissions factors measured during the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) field campaign in April 2015. Our results indicate that the commonly used global emissions inventory, the Hemispheric Transport of Air Pollution (HTAP_v2.2), underestimates particulate matter emissions from vehicles in the Kathmandu Valley by a factor greater than 100. HTAP_v2.2 does not include the brick sector and we found that our sulfur dioxide (SO2) emissions estimates from brick kilns are comparable to 70 % of the total SO2 emissions considered in HTAP_v2.2. Next, we simulated air quality using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for April 2015 based on three different emissions scenarios: HTAP only, HTAP with updated vehicle emissions, and HTAP with both updated vehicle and brick kilns emissions. Comparisons between simulated results and observations indicate that the model underestimates observed surface elemental carbon (EC) and SO2 concentrations under all emissions scenarios. However, our updated estimates of vehicle emissions significantly reduced model bias for EC, while updated emissions from brick kilns improved model performance in simulating SO2. These results highlight the importance of improving local emissions estimates for air quality modeling. We further find that model overestimation of surface wind leads to underestimated air pollutant concentrations in the Kathmandu Valley. Future work should focus on improving local emissions estimates for other major and underrepresented sources (e.g., crop residue burning and garbage burning) with a high spatial resolution, as well as the model\u27s boundary layer representation, to capture strong spatial gradients of air pollutant concentrations
Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: Concentrations and sources of particulate matter and trace gases
The Kathmandu Valley in Nepal is a bowl-shaped urban basin that experiences severe air pollution that poses health risks to its 3.5 million inhabitants. As part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE), ambient air quality in the Kathmandu Valley was investigated from 11 to 24 April 2015, during the premonsoon season. Ambient concentrations of fine and coarse particulate matter (PM2:5 and PM10, respectively), online PM1, inorganic trace gases (NH3, HNO3, SO2, and HCl), and carbon-containing gases (CO2, CO, CH4, and 93 nonmethane volatile organic compounds; NMVOCs) were quantified at a semi-urban location near the center of the valley. Concentrations and ratios of NMVOC indicated origins primarily from poorly maintained vehicle emissions, biomass burning, and solvent/gasoline evaporation. During those 2 weeks, daily average PM2:5 concentrations ranged from 30 to 207 μ g m-3, which exceeded the World Health Organization 24 h guideline by factors of 1.2 to 8.3. On average, the nonwater mass of PM2:5 was composed of organic matter (48 %), elemental carbon (13 %), sulfate (16 %), nitrate (4 %), ammonium (9 %), chloride (2 %), calcium (1 %), magnesium (0.05 %), and potassium (1 %). Large diurnal variability in temperature and relative humidity drove corresponding variability in aerosol liquid water content, the gas-aerosol phase partitioning of NH3, HNO3, and HCl, and aerosol solution pH. The observed levels of gas-phase halogens suggest that multiphase halogen-radical chemistry involving both Cl and Br impacted regional air quality. To gain insight into the origins of organic carbon (OC), molecular markers for primary and secondary sources were quantified. Levoglucosan (averaging 1230±1154 ng m-3), 1,3,5-triphenylbenzene (0:8± 0:6 ng m-3), cholesterol (2:9±6:6 ng m-3), stigmastanol (1.0 ±0:8 ng m-3), and cis-pinonic acid (4:5 ± 1:9 ng m-3) indicate contributions from biomass burning, garbage burning, food cooking, cow dung burning, and monoterpene secondary organic aerosol, respectively. Drawing on source profiles developed in NAMaSTE, chemical mass balance (CMB) source apportionment modeling was used to estimate contributions to OC from major primary sources including garbage burning (18 ± 5 %), biomass burning (17 ± 10 %) inclusive of open burning and biomass-fueled cooking stoves, and internal-combustion (gasoline and diesel) engines (18±9 %). Model sensitivity tests with newly developed source profiles indicated contributions from biomass burning within a factor of 2 of previous estimates but greater contributions from garbage burning (up to three times), indicating large potential impacts of garbage burning on regional air quality and the need for further evaluation of this source. Contributions of secondary organic carbon (SOC) to PM2:5 OC included those originating from anthropogenic precursors such as naphthalene (10 ± 4 %) and methylnaphthalene (0:3 ± 0:1 %) and biogenic precursors for monoterpenes (0:13 ± 0:07 %) and sesquiterpenes (5 ± 2 %). An average of 25 % of the PM2.5 OC was unapportioned, indicating the presence of additional sources (e.g., evaporative and/or industrial emissions such as brick kilns, food cooking, and other types of SOC) and/or underestimation of the contributions from the identified source types. The source apportionment results indicate that anthropogenic combustion sources (including biomass burning, garbage burning, and fossil fuel combustion) were the greatest contributors to PM2:5 and, as such, should be considered primary targets for controlling ambient PM pollution
Speciated online PM1 from South Asian combustion sources-Part 1: Fuel-based emission factors and size distributions
Combustion of biomass, garbage, and fossil fuels in South Asia has led to poor air quality in the region and has uncertain climate forcing impacts. Online measurements of submicron aerosol (PM1) emissions were conducted as part of the Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) to investigate and report emission factors (EFs) and vacuum aerodynamic diameter (dva) size distributions from prevalent but poorly characterized combustion sources. The online aerosol instrumentation included a qmini aerosol mass spectrometer (mAMS) and a dual-spot eight-channel aethalometer (AE33). The mAMS measured non-refractory PM1 mass, composition, and size. The AE33-measured black carbon (BC) mass and estimated light absorption at 370 nm due to organic aerosol or brown carbon. Complementary gas-phase measurements of carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4) were collected using a Picarro Inc. cavity ring-down spectrometer (CRDS) to calculate fuel-based EFs using the carbon mass balance approach. The investigated emission sources include open garbage burning, diesel-powered irrigation pumps, idling motorcycles, traditional cookstoves fueled with dung and wood, agricultural residue fires, and coal-fired brick-making kilns, all of which were tested in the field. Open-garbage-burning emissions, which included mixed refuse and segregated plastics, were found to have some of the largest PM1 EFs (3.77-19.8 g k-1) and the highest variability of the investigated emission sources. Non-refractory organic aerosol (OA) size distributions measured by the mAMS from garbage-burning emissions were observed to have lognormal mode dva values ranging from 145 to 380 nm. Particle-phase hydrogen chloride (HCl) was observed from open garbage burning and was attributed to the burning of chlorinated plastics. Emissions from two diesel-powered irrigation pumps with different operational ages were tested during NAMaSTE. Organic aerosol and BC were the primary components of the emissions and the OA size distributions were centered at ∼ 80 nm dva. The older pump was observed to have significantly larger EFOA than the newer pump (5.18 g k-1 compared to 0.45 g k-1) and similar EFBC. Emissions from two distinct types of coal-fired brick-making kilns were investigated. The less advanced, intermittently fired clamp kiln was observed to have relatively large EFs of inorganic aerosol, including sulfate (0.48 g k-1) and ammonium (0.17 g k-1), compared to the other investigated emission sources. The clamp kiln was also observed to have the largest absorption Ångström exponent (AAE Combining double low line 4) and organic carbon (OC) to BC ratio (OC: BC Combining double low line 52). The continuously fired zigzag kiln was observed to have the largest fraction of sulfate emissions with an EFSO4 of 0.96 g k-1. Non-refractory aerosol size distributions for the brick kilns were centered at ∼ 400 nm dva. The biomass burning samples were all observed to have significant fractions of OA and non-refractory chloride; based on the size distribution results, the chloride was mostly externally mixed from the OA. The dung-fueled traditional cookstoves were observed to emit ammonium, suggesting that the chloride emissions were partially neutralized. In addition to reporting EFs and size distributions, aerosol optical properties and mass ratios of OC to BC were investigated to make comparisons with other NAMaSTE results (i.e., online photoacoustic extinctiometer (PAX) and off-line filter based) and the existing literature. This work provides critical field measurements of aerosol emissions from important yet under-characterized combustion sources common to South Asia and the developing world
Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources
The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, inm2kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (gkg-1 fuel burned). The trace gas measurements provide EFs (gkg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ∼ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63±0.68) was significantly higher than for wood-fuel cooking fires (3.01±0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00±1.33gkg-1), organic acids (7.66±6.90gkg-1), and HCN (2.01±1.25gkg-1), where the latter could contribute to satellite observations of high levels of HCN in the lower stratosphere above the Asian monsoon. HCN was also emitted in significant quantities by several non-biomass burning sources. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) were major emissions from both dung- (∼4.5gkg-1) and wood-fuel (∼1.5gkg-1) cooking fires, and a simple method to estimate indoor exposure to the many measured important air toxics is described. Biogas emerged as the cleanest cooking technology of approximately a dozen stove-fuel combinations measured. Crop residue burning produced relatively high emissions of oxygenated organic compounds (∼12gkg-1) and SO2 (2.54±1.09gkg-1). Two brick kilns co-firing different amounts of biomass with coal as the primary fuel produced contrasting results. A zigzag kiln burning mostly coal at high efficiency produced larger amounts of BC, HF, HCl, and NOx, with the halogenated emissions likely coming from the clay. The clamp kiln (with relatively more biomass fuel) produced much greater quantities of most individual organic gases, about twice as much BrC, and significantly more known and likely organic aerosol precursors. Both kilns were significant SO2 sources with their emission factors averaging 12.8±0.2gkg-1. Mixed-garbage burning produced significantly more BC (3.3±3.88gkg-1) and BTEX (∼4.5gkg-1) emissions than in previous measurements. For all fossil fuel sources, diesel burned more efficiently than gasoline but produced larger NOx and aerosol emission factors. Among the least efficient sources sampled were gasoline-fueled motorcycles during start-up and idling for which the CO EF was on the order of ∼700gkg-1 - or about 10 times that of a typical biomass fire. Minor motorcycle servicing led to minimal if any reduction in gaseous pollutants but reduced particulate emissions, as detailed in a companion paper (Jayarathne et al., 2016). A small gasoline-powered generator and an insect repellent fire were also among the sources with the highest emission factors for pollutants. These measurements begin to address the critical data gap for these important, undersampled sources, but due to their diversity and abundance, more work is needed
Gridded brick kiln emissions estimates in the Kathmandu Valley
This is the gridded brick kiln emissions data that are described in the following paper: Zhong et al, 2019
Submicron Aerosol Composition and Source Contribution across the Kathmandu Valley, Nepal, in Winter
The Kathmandu valley experiences an average wintertime
PM1 concentration of ∼100 μg m–3 and
daily peaks over 200 μg m–3. We present ambient
nonrefractory PM1 chemical composition, and concentration
measured by a mini aerosol mass spectrometer (mAMS) sequentially at
Dhulikhel (on the valley exterior), then urban Ratnapark, and finally
suburban Lalitpur in winter 2018. At all sites, organic aerosol (OA)
was the largest contributor to combined PM1 (C-PM1) (49%) and black carbon (BC) was the second largest contributor
(21%). The average background C-PM1 at Dhulikhel was 48
μg m–3; the urban enhancement was 120% (58
μg m–3). BC had an average of 6.1 μg
m–3 at Dhulikhel, an urban enhancement of 17.4 μg
m–3. Sulfate (SO4) was 3.6 μg m–3 at Dhulikhel, then 7.5 μg m–3 at Ratnapark, and 12.0 μg m–3 at Lalitpur
in the brick kiln region. Chloride (Chl) increased by 330 and 250%
from Dhulikhel to Ratnapark and Lalitpur on average. Positive matrix
factorization (PMF) identified seven OA sources, four primary OA sources,
hydrocarbon-like (HOA), biomass burning (BBOA), trash burning (TBOA),
a sulfate-containing local OA source (sLOA), and three secondary oxygenated
organic aerosols (OOA). OOA was the largest fraction of OA, over 50%
outside the valley and 36% within. HOA (traffic) was the most prominent
primary source, contributing 21% of all OA and 44% of BC. Brick kilns
were the second largest contributor to C-PM1, 12% of OA,
33% of BC, and a primary emitter of aerosol sulfate. These results,
though successive, indicate the importance of multisite measurements
to understand ambient particulate matter concentration heterogeneity
across urban regions
Wintertime Air Quality in Lumbini, Nepal: Sources of Fine Particle Organic Carbon
International audienceThe Indo-Gangetic Plains (IGP) experience high levels of airborne particulate matter (PM), especially during the dry season. Contributing to PM are natural and anthropogenic emissions and the atmospheric transformation of gases to form particles. Regional smog events occur frequently during wintertime and provide an atmospheric medium for aerosol processing. Here, we investigate the chemical composition and sources of PM at a representative site in the northern IGP during the second Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE 2)