3,369 research outputs found
Recommended from our members
Evolution Of Galaxies .4. Highly Flattened Disks
NSF GP-18335, GP-32051Astronom
Recommended from our members
Advanced Evolution Of Massive Stars .4. Secondary Nucleosynthesis During Helium Burning
NSF GP-32051, GP-23282Astronom
Recommended from our members
Evolution Of Galaxies .2. Chemical Evolution Coefficients
NSF GP-18355, GP-32051Astronom
Turbulent Mixing in Stars: Theoretical Hurdles
A program is outlined, and first results described, in which fully
three-dimensional, time dependent simulations of hydrodynamic turbulence are
used as a basis for theoretical investigation of the physics of turbulence in
stars. The inadequacy of the treatment of turbulent convection as a diffusive
process is discussed. A generalization to rotation and magnetohydrodynamics is
indicated, as are connection to simulations of 3D stellar atmospheres.Comment: 5 pages, 1 figure, IAU Symposium 265, 200
Chaos and Turbulent Nucleosynthesis Prior to a Supernova Explosion
Three-dimensional (3D), time dependent numerical simulations, of flow of
matter in stars, now have sufficient resolution to be fully turbulent. The late
stages of the evolution of massive stars, leading up to core collapse to a
neutron star (or black hole), and often to supernova explosion and
nucleosynthesis, are strongly convective because of vigorous neutrino cooling
and nuclear heating. Unlike models based on current stellar evolutionary
practice, these simulations show a chaotic dynamics characteristic of highly
turbulent flow. Theoretical analysis of this flow, both in the
Reynolds-averaged Navier-Stokes (RANS) framework and by simple dynamic models,
show an encouraging consistency with the numerical results. It may now be
possible to develop physically realistic and robust procedures for convection
and mixing which (unlike 3D numerical simulation) may be applied throughout the
long life times of stars. In addition, a new picture of the presupernova stages
is emerging which is more dynamic and interesting (i.e., predictive of new and
newly observed phenomena) than our previous one.Comment: 11 pages, 2 figures, Submitted to AIP Advances: Stardust, added
figures and modest rewritin
A computer program for the calculation of thermal stratification and self-pressurization in a liquid hydrogen tank
An analysis and computer program are described for calculating the thermal stratification and the associated self-pressurization of a closed liquid hydrogen tank. FORTRAN-IV language is used and runs were made on IBM 360/65 and CDC 3600 computers. Comparisons are made between the program calculations and test results from both ground and orbital coast tests of a Centaur space vehicle
Stellar neutrino energy loss rates due to Mg suitable for O+Ne+Mg core simulations
Neutrino losses from proto-neutron stars play a pivotal role to decide if
these stars would be crushed into black holes or explode as supernovae. Recent
observations of subluminous Type II-P supernovae (e.g., 2005cs, 2003gd, 1999br,
1997D) were able to rejuvenate the interest in 8-10 M stars which
develop O+Ne+Mg cores. Simulation results of O+Ne+Mg cores show varying results
in converting the collapse into an explosion. The neutrino energy loss rates
are important input parameters in core collapse simulations. Proton-neutron
quasi-particle random phase approximation (pn-QRPA) theory has been used for
calculation of neutrino energy loss rates due to Mg in stellar matter.
The rates are presented on a detailed density-temperature grid suitable for
simulation purposes. The calculated neutrino energy loss rates are enhanced up
to more than one order of magnitude compared to the shell model calculations
and favor a lower entropy for the core of these massive stars.Comment: 20 pages, 4 figures, 2 table
- …