4,692 research outputs found

    Yang-Lee Theory for a Nonequilibrium Phase Transition

    Full text link
    To analyze phase transitions in a nonequilibrium system we study its grand canonical partition function as a function of complex fugacity. Real and positive roots of the partition function mark phase transitions. This behavior, first found by Yang and Lee under general conditions for equilibrium systems, can also be applied to nonequilibrium phase transitions. We consider a one-dimensional diffusion model with periodic boundary conditions. Depending on the diffusion rates, we find real and positive roots and can distinguish two regions of analyticity, which can identified with two different phases. In a region of the parameter space both of these phases coexist. The condensation point can be computed with high accuracy.Comment: 4 pages, accepted for publication in Phys.Rev.Let

    On Matrix Product States for Periodic Boundary Conditions

    Full text link
    The possibility of a matrix product representation for eigenstates with energy and momentum zero of a general m-state quantum spin Hamiltonian with nearest neighbour interaction and periodic boundary condition is considered. The quadratic algebra used for this representation is generated by 2m operators which fulfil m^2 quadratic relations and is endowed with a trace. It is shown that {\em not} every eigenstate with energy and momentum zero can be written as matrix product state. An explicit counter-example is given. This is in contrast to the case of open boundary conditions where every zero energy eigenstate can be written as a matrix product state using a Fock-like representation of the same quadratic algebra.Comment: 7 pages, late

    Environmental chemical exposures and risk of herpes zoster.

    Get PDF
    This study investigated whether residence in Aberdeen, North Carolina, the location of the Aberdeen pesticides dumps site (a national priority list Superfund site containing organochlorine pesticides, volatile organic compounds, and metals), is associated with immune suppression as indicated by a higher incidence of herpes zoster and recent occurrences of other common infectious diseases. Study participants included 1,642 residents, 18-64 years of age, who responded to a telephone survey concerning potential occupational and recreational exposures to pesticides and other chemicals, lifetime history of herpes zoster (shingles), and the recent occurrence of other common infectious diseases. Stratified and logistic regression analyses were used to compare the cumulative incidence of herpes zoster among Aberdeen residents and residents of nearby communities. There was little evidence of an overall increased risk of herpes zoster among Aberdeen residents during the period 1951-1994 [relative risk (RR), 1.3; 95% confidence interval (CI), 0.8-2.1]. However, an elevated risk of herpes zoster was noted consistently among Aberdeen residents of younger ages as compared to residents of the nearby communities. The RR was 2.0 (CI, 1.0-4.0) among those 18-40 years of age and was not affected by controlling for potential confounders. The RR of herpes zoster was also consistently elevated in all age groups for the period before 1985. No differences were noted between residents of Aberdeen and those of the nearby communities with respect to the recent occurrence of other common infectious diseases. These results support the plausibility of an association between exposure to the Aberdeen pesticides dumps site and immune suppression and the potential use of herpes zoster as a marker of immune suppression in studies of environmental chemical exposures

    Yang-Lee zeroes for an urn model for the separation of sand

    Full text link
    We apply the Yang-Lee theory of phase transitions to an urn model of separation of sand. The effective partition function of this nonequilibrium system can be expressed as a polynomial of the size-dependent effective fugacity zz. Numerical calculations show that in the thermodynamic limit, the zeros of the effective partition function are located on the unit circle in the complex zz-plane. In the complex plane of the actual control parameter certain roots converge to the transition point of the model. Thus the Yang-Lee theory can be applied to a wider class of nonequilibrium systems than those considered previously.Comment: 4 pages, 3 eps figures include

    One-Dimensional Partially Asymmetric Simple Exclusion Process on a Ring with a Defect Particle

    Full text link
    The effect of a moving defect particle for the one-dimensional partially asymmetric simple exclusion process on a ring is considered. The current of the ordinary particles, the speed of the defect particle and the density profile of the ordinary particles are calculated exactly. The phase diagram for the correlation length is identified. As a byproduct, the average and the variance of the particle density of the one-dimensional partially asymmetric simple exclusion process with open boundaries are also computed.Comment: 23 pages, 1 figur

    Exact solution and asymptotic behaviour of the asymmetric simple exclusion process on a ring

    Full text link
    In this paper, we study an exact solution of the asymmetric simple exclusion process on a periodic lattice of finite sites with two typical updates, i.e., random and parallel. Then, we find that the explicit formulas for the partition function and the average velocity are expressed by the Gauss hypergeometric function. In order to obtain these results, we effectively exploit the recursion formula for the partition function for the zero-range process. The zero-range process corresponds to the asymmetric simple exclusion process if one chooses the relevant hop rates of particles, and the recursion gives the partition function, in principle, for any finite system size. Moreover, we reveal the asymptotic behaviour of the average velocity in the thermodynamic limit, expanding the formula as a series in system size.Comment: 10 page

    Exact Solution of an Exclusion Model in the Presence of a moving Impurity

    Full text link
    We study a recently introduced model which consists of positive and negative particles on a ring. The positive (negative) particles hop clockwise (counter-clockwise) with rate 1 and oppositely charged particles may swap their positions with asymmetric rates q and 1. In this paper we assume that a finite density of positively charged particles ρ\rho and only one negative particle (which plays the role of an impurity) exist on the ring. It turns out that the canonical partition function of this model can be calculated exactly using Matrix Product Ansatz (MPA) formalism. In the limit of infinite system size and infinite number of positive particles, we can also derive exact expressions for the speed of the positive and negative particles which show a second order phase transition at qc=2ρq_c=2\rho. The density profile of the positive particles on the ring has a shock structure for qqcq \leq q_c and an exponential behaviour with correlation length ξ\xi for qqcq \geq q_c. It will be shown that the mean-field results become exact at q=3 and no phase transition occurs for q>2.Comment: 9 pages,4 EPS figures. To be appear in JP

    Symmetry breaking through a sequence of transitions in a driven diffusive system

    Full text link
    In this work we study a two species driven diffusive system with open boundaries that exhibits spontaneous symmetry breaking in one dimension. In a symmetry broken state the currents of the two species are not equal, although the dynamics is symmetric. A mean field theory predicts a sequence of two transitions from a strongly symmetry broken state through an intermediate symmetry broken state to a symmetric state. However, a recent numerical study has questioned the existence of the intermediate state and instead suggested a single discontinuous transition. In this work we present an extensive numerical study that supports the existence of the intermediate phase but shows that this phase and the transition to the symmetric phase are qualitatively different from the mean-field predictions.Comment: 19 pages, 12 figure

    Stochastic Models on a Ring and Quadratic Algebras. The Three Species Diffusion Problem

    Full text link
    The stationary state of a stochastic process on a ring can be expressed using traces of monomials of an associative algebra defined by quadratic relations. If one considers only exclusion processes one can restrict the type of algebras and obtain recurrence relations for the traces. This is possible only if the rates satisfy certain compatibility conditions. These conditions are derived and the recurrence relations solved giving representations of the algebras.Comment: 12 pages, LaTeX, Sec. 3 extended, submitted to J.Phys.

    The wave nature of biomolecules and fluorofullerenes

    Full text link
    We demonstrate quantum interference for tetraphenylporphyrin, the first biomolecule exhibiting wave nature, and for the fluorofullerene C60F48 using a near-field Talbot-Lau interferometer. For the porphyrins, which are distinguished by their low symmetry and their abundant occurence in organic systems, we find the theoretically expected maximal interference contrast and its expected dependence on the de Broglie wavelength. For C60F48 the observed fringe visibility is below the expected value, but the high contrast still provides good evidence for the quantum character of the observed fringe pattern. The fluorofullerenes therefore set the new mark in complexity and mass (1632 amu) for de Broglie wave experiments, exceeding the previous mass record by a factor of two.Comment: 5 pages, 4 figure
    corecore