9,055 research outputs found
Looking for Light Pseudoscalar Bosons in the Binary Pulsar System J0737-3039
We present numerical calculations of the photon-light-pseudoscalar-boson
conversion in the recently discovered binary pulsar system J0737-3039. Light
pseudoscalar bosons (LPBs) oscillate into photons in the presence of strong
magnetic fields. In the context of this binary pulsar system, this phenomenon
attenuates the light beam emitted by one of the pulsars, when the light ray
goes through the magnetosphere of the companion pulsar. We show that such an
effect is observable in the gamma-ray band since the binary pulsar is seen
almost edge-on, depending on the value of the LPB mass and on the strenght of
its two-photon coupling. Our results are surprising in that they show a very
sharp and significant (up to 50%) transition probability in the gamma-ray (
tens of MeV) domain. The observations can be performed by the upcoming NASA
GLAST mission.Comment: to appear in Phys. Rev. Let
The hot gas content of fossil galaxy clusters
We investigate the properties of the hot gas in four fossil galaxy systems
detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey.
XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield
hydrostatic masses M500,HE > 3.5 x 10e14 Msun, confirming their nature as bona
fide massive clusters. We measure the thermodynamic properties of the hot gas
in X-rays (out to beyond R500 in three cases) and derive their individual
pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray
and SZ data to measure hydrostatic mass profiles and to examine the hot gas
content and its radial distribution. The average Navarro-Frenk-White (NFW)
concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed
`normal' clusters. The gas mass fraction profiles exhibit striking variation in
the inner regions, but converge to approximately the cosmic baryon fraction
(corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles
again diverge, which we interpret as being due to a difference in gas clumping
and/or a breakdown of hydrostatic equilibrium in the external regions. Overall
our observations point to considerable radial variation in the hot gas content
and in the gas clumping and/or hydrostatic equilibrium properties in these
fossil clusters, at odds with the interpretation of their being old, evolved
and undisturbed. At least some fossil objects appear to be dynamically young.Comment: 4 pages, 2 figures. Accepted for publication in A&
X-Ray Photoabsorption in KLL Resonances of O VI And Abundance Analysis
It is shown that photoabsorption via autoionizing resonances may be
appreciable and used for abundance analysis. Analogous to spectral lines, the
`resonance oscillator strength' f_r may be defined and evaluated in terms of
the differential oscillator strength df/d(epsilon) that relates bound and
continuum absorption. X-ray photoabsorption in KLL (1s2s2p) resonances of O VI
is investigated using highly resolved relativistic photoionization cross
sections with fine structure. It is found that f_r is comparable to that for UV
dipole transition in O VI (2s - 2p) and the X-ray (1s^2 ^1S_0 - 1s2p ^1P^o_1)
transition in O VII. The dominant O VI(KLL) components lie at 22.05 and 21.87
Angstroms. These predicted absorption features should be detectable by the
Chandra X-Ray Observatory (CXO) and the X-Ray Multi-Mirror Mission (XMM). The
combined UV/X-ray spectra of O VI/O VII should yield valuable information on
the ionization structure and abundances in sources such as the `warm absorber'
region of active galactic nuclei and the hot intergalactic medium. Some general
implications of resonant photoabsorption are addressed.Comment: Astrophys. J. Letters (in press), 9 pages, 3 figure
On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters
The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the
field and in rich galaxy clusters are contrasted by juxtaposing the build-up of
heavy metals in the universe inferred from observed star formation and
supernovae rate histories with data on the evolution of Fe abundances in the
intracluster medium (ICM). Models for the chemical evolution of Fe in these
environments are constructed, subject to observational constraints, for this
purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial
mass function (IMF) are consistent with observations in the field, cluster Fe
enrichment immediately tracks a rapid, top-heavy phase of star formation --
although transport of Fe into the ICM may be more prolonged and star formation
likely continues to redshifts <1. The source of this prompt enrichment is Type
II supernovae (SNII) yielding at least 0.1 solar masses per explosion (if the
SNIa rate normalization is scaled down from its value in the field according to
the relative number of candidate progenitor stars in the 3-8 solar mass range)
and/or SNIa explosions with short delay times associated with the rapid star
formation mode. Star formation is >3 times more efficient in rich clusters than
in the field, mitigating the overcooling problem in numerical cluster
simulations. Both the fraction of baryons cycled through stars, and the
fraction of the total present-day stellar mass in the form of stellar remnants,
are substantially greater in clusters than in the field.Comment: 51 pages including 26 figures and 2 tables, accepted for publication
in ApJ 5/4/0
An Ab Initio Approach to the Solar Coronal Heating Problem
We present an ab initio approach to the solar coronal heating problem by
modelling a small part of the solar corona in a computational box using a 3D
MHD code including realistic physics. The observed solar granular velocity
pattern and its amplitude and vorticity power spectra, as reproduced by a
weighted Voronoi tessellation method, are used as a boundary condition that
generates a Poynting flux in the presence of a magnetic field. The initial
magnetic field is a potential extrapolation of a SOHO/MDI high resolution
magnetogram, and a standard stratified atmosphere is used as a thermal initial
condition. Except for the chromospheric temperature structure, which is kept
fixed, the initial conditions are quickly forgotten because the included
Spitzer conductivity and radiative cooling function have typical timescales
much shorter than the time span of the simulation. After a short initial start
up period, the magnetic field is able to dissipate 3-4 10^6 ergs cm^{-2} s^{-1}
in a highly intermittent corona, maintaining an average temperature of K, at coronal density values for which emulated images of the Transition
Region And Coronal Explorer(TRACE) 171 and 195 pass bands reproduce observed
photon count rates.Comment: 12 pages, 14 figures. Submitted to Ap
Testing the performance of a blind burst statistic
In this work we estimate the performance of a method for the detection of
burst events in the data produced by interferometric gravitational wave
detectors. We compute the receiver operating characteristics in the specific
case of a simulated noise having the spectral density expected for Virgo, using
test signals taken from a library of possible waveforms emitted during the
collapse of the core of Type II Supernovae.Comment: 8 pages, 6 figures, Talk given at the GWDAW2002 worksho
- âŠ