18 research outputs found

    Systematic errors due to quasi-universal relations in binary neutron stars and their correction for unbiased model selection

    Full text link
    Inference of the equation-of-state (EoS) of dense nuclear matter in neutron-star cores is a principal science goal of X-ray and gravitational-wave observations of neutron stars. In particular, gravitational-wave observations provide an independent probe of the properties of bulk matter in neutron star cores that can then be used to compare with theoretically derived equations of state. In this paper, we quantify the systematic errors arising from the application of EoS-independent \emph{quasi-universal relations} in the estimation of neutron star tidal deformabilities and radii from gravitational-wave measurements and introduce a strategy to correct for the systematic biases in the inferred radii. We apply this method to a simulated population of events expected to be observed by future upgrades of current detectors and the next-generation of ground-based observatories. We show that our approach can accurately correct for the systematic biases arising from approximate universal relations in the mass-radius curves of neutron stars. Using the posterior distributions of the mass and radius for the simulated population we infer the underlying EoS with a good degree of precision. Our method revives the possibility of using the universal relations for rapid Bayesian model selection of dense matter EoS in gravitational-wave observations

    Constraining runaway dilaton models using joint gravitational-wave and electromagnetic observations

    Full text link
    With the advent of gravitational-wave astronomy it has now been possible to constrain modified theories of gravity that were invoked to explain the dark energy. In a class of dilaton models, distances to cosmic sources inferred from electromagnetic and gravitational wave observations would differ due to the presence of a friction term. In such theories, the ratio of the Newton's constant to the fine structure constant varies with time. In this paper we explore the degree to which it will be possible to test such models. If collocated sources (e.g. supernovae and binary neutron star mergers), but not necessarily multimessengers, can be identified by electromagnetic telescopes and gravitational-wave detectors one can probe if light and gravitational radiation are subject to the same laws of propagation over cosmological distances. This helps in constraining the variation of Newton's constant relative to fine-structure constant. The next generation of gravitational wave detectors, such as the Cosmic Explorer and Einstein Telescope, in tandem with the Vera Rubin Observatory and gamma ray observatories such as the Fermi Space Observatory will be able to detect or constrain such variations at the level of a few parts in 100. We apply this method to GW170817 with distances inferred by the LIGO and Virgo detectors and the observed Kilonova

    Cosmography with bright and Love sirens

    Full text link
    Precision cosmology is crucial to understand the different energy components in the Universe and their evolution through cosmic time. Gravitational wave sources are standard sirens that can accurately map out distances in the Universe. Together with the source redshift information, we can then probe the expansion history of the Universe. We explore the capabilities of various gravitational-wave detector networks to constrain different cosmological models while employing separate waveform models for inspiral and post-merger part of the gravitational wave signal from equal mass binary neutron stars. We consider two different avenues to measure the redshift of a gravitational-wave source: first, we examine an electromagnetic measurement of the redshift via either a kilonova or a gamma ray burst detection following a binary neutron star merger (the electromagnetic counterpart method); second, we estimate the redshift from the gravitational-wave signal itself from the adiabatic tides between the component stars characterized by the tidal Love number, to provide a second mass-scale and break the mass-redshift degeneracy (the counterpart-less method). We find that the electromagnetic counterpart method is better suited to measure the Hubble constant while the counterpart-less method places more stringent bounds on other cosmological parameters. In the era of next-generation gravitational-wave detector networks, both methods achieve sub-percent measurement of the Hubble constant H0H_0 after one year of observations. The dark matter energy density parameter ΩM\Omega_{\rm M} in the Λ\LambdaCDM model can be measured at percent-level precision using the counterpart method, whereas the counterpart-less method achieves sub-percent precision. We, however, do not find the postmerger signal to contribute significantly to these precision measurements

    Long-Term Optical Flux and Colour Variability in Quasars

    Get PDF
    We have used optical V and R band observations from the Massive Compact Halo Object (MACHO) project on a sample of 59 quasars behind the Magellanic clouds to study their long term optical flux and colour variations. These quasars, lying in the redshift range of 0.2 < z < 2.8 and having apparent V band magnitudes between 16.6 and 20.1 mag, have observations ranging from 49 to 1353 epochs spanning over 7.5 yr with frequency of sampling between 2 to 10 days. All the quasars show variability during the observing period. The normalised excess variance (Fvar) in V and R bands are in the range 0.2% < FVvar < 1.6% and 0.1% < FRvar < 1.5% respectively. In a large fraction of the sources, Fvar is larger in the V band compared to the R band. From the z-transformed discrete cross-correlation function analysis, we find that there is no lag between the V and R band variations. Adopting the Markov Chain Monte Carlo (MCMC) approach, and properly taking into account the correlation between the errors in colours and magnitudes, it is found that the majority of sources show a bluer when brighter trend, while a minor fraction of quasars show the opposite behaviour. This is similar to the results obtained from another two independent algorithms, namely the weighted linear least squares fit (FITEXY) and the bivariate correlated errors and intrinsic scatter regression (BCES). However, the ordinary least squares (OLS) fit, normally used in the colour variability studies of quasars, indicates that all the quasars studied here show a bluer when brighter trend. It is therefore very clear that the OLS algorithm cannot be used for the study of colour variability in quasars

    The Accuracy of Neutron Star Radius Measurement with the Next Generation of Terrestrial Gravitational-Wave Observatories

    Full text link
    In this paper, we explore the prospect for improving the measurement accuracy of masses and radii of neutron stars. We consider imminent and long-term upgrades of the Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo, as well as next-generation observatories -- the Cosmic Explorer and Einstein Telescope. We find that neutron star radius with single events will be constrained to within roughly 500m with the current generation of detectors and their upgrades. This will improve to 200m, 100m and 50m with a network of observatories that contain one, two or three next-generation observatories, respectively. Combining events in bins of 0.05 solar masses we find that for stiffer (softer) equations-of-state like ALF2 (APR4), a network of three XG observatories will determine the radius to within 30m (100m) over the entire mass range of neutron stars from 1 to 2.0 solar masses (2.2 solar masses), allowed by the respective equations-of-state. Neutron star masses will be measured to within 0.5 percent with three XG observatories irrespective of the actual equation-of-state. Measurement accuracies will be a factor of 4 or 2 worse if the network contains only one or two XG observatories, respectively, and a factor of 10 worse in the case of networks consisting of Advanced LIGO, Virgo KAGRA and their upgrades. Tens to hundreds of high-fidelity events detected by future observatories will allow us to accurately measure the mass-radius curve and hence determine the dense matter equation-of-state to exquisite precision

    Neutron star-black hole mergers in next generation gravitational-wave observatories

    Full text link
    Observations by the current generation of gravitational-wave detectors have been pivotal in expanding our understanding of the universe. Although tens of exciting compact binary mergers have been observed, neutron star-black hole (NSBH) mergers remained elusive until they were first confidently detected in 2020. The number of NSBH detections is expected to increase with sensitivity improvements of the current detectors and the proposed construction of new observatories over the next decade. In this work, we explore the NSBH detection and measurement capabilities of these upgraded detectors and new observatories using the following metrics: network detection efficiency and detection rate as a function of redshift, distributions of the signal-to-noise ratios, the measurement accuracy of intrinsic and extrinsic parameters, the accuracy of sky position measurement, and the number of early-warning alerts that can be sent to facilitate the electromagnetic follow-up. Additionally, we evaluate the prospects of performing multi-messenger observations of NSBH systems by reporting the number of expected kilonova detections with the Vera C. Rubin Observatory and the Nancy Grace Roman Space Telescope. We find that as many as O(10)\mathcal{O}(10) kilonovae can be detected by these two telescopes every year, depending on the population of the NSBH systems and the equation of state of neutron stars.Comment: 30 pages, 15 figure

    Dark sirens to resolve the Hubble-Lemaître tension

    Get PDF
    The planned sensitivity upgrades to the LIGO and Virgo facilities could uniquely identify host galaxies of dark sirens—compact binary coalescences without any electromagnetic counterparts—within a redshift of z = 0.1. This is aided by the higher-order spherical harmonic modes present in the gravitational-wave signal, which also improve distance estimation. In conjunction, sensitivity upgrades and higher modes will facilitate an accurate, independent measurement of the host galaxy's redshift in addition to the luminosity distance from the gravitational-wave observation to infer the Hubble–Lemaître constant H 0 to better than a few percent in 5 yr. A possible Voyager upgrade or third-generation facilities would further solidify the role of dark sirens for precision cosmology in the future

    Prospects for direct detection of black hole formation in neutron star mergers with next-generation gravitational-wave detectors

    Get PDF
    A direct detection of black hole formation in neutron star mergers would provide invaluable information about matter in neutron star cores and finite temperature effects on the nuclear equation of state. We study black hole formation in neutron star mergers using a set of 190 numerical relativity simulations consisting of long-lived and black-hole-forming remnants. The postmerger gravitational-wave spectrum of a long-lived remnant has greatly reduced power at a frequency f greater than f peak , for f ≳ 4     kHz , with f peak ∈ [ 2.5 , 4 ]     kHz . On the other hand, black-hole-forming remnants exhibit excess power in the same large f region and manifest exponential damping in the time domain characteristic of a quasinormal mode. We demonstrate that the gravitational-wave signal from a collapsed remnant is indeed a quasinormal ringing. We report on the opportunity for direct detections of black hole formation with next-generation gravitational-wave detectors such as Cosmic Explorer and Einstein Telescope and set forth the tantalizing prospect of such observations up to a distance of 100 Mpc for an optimally oriented and located source with an SNR of 4

    Possible Causes of False General Relativity Violations in Gravitational Wave Observations

    Full text link
    General relativity (GR) has proven to be a highly successful theory of gravity since its inception. The theory has thrivingly passed numerous experimental tests, predominantly in weak gravity, low relative speeds, and linear regimes, but also in the strong-field and very low-speed regimes with binary pulsars. Observable gravitational waves (GWs) originate from regions of spacetime where gravity is extremely strong, making them a unique tool for testing GR, in previously inaccessible regions of large curvature, relativistic speeds, and strong gravity. Since their first detection, GWs have been extensively used to test GR, but no deviations have been found so far. Given GR's tremendous success in explaining current astronomical observations and laboratory experiments, accepting any deviation from it requires a very high level of statistical confidence and consistency of the deviation across GW sources. In this paper, we compile a comprehensive list of potential causes that can lead to a false identification of a GR violation in standard tests of GR on data from current and future ground-based GW detectors. These causes include detector noise, signal overlaps, gaps in the data, detector calibration, source model inaccuracy, missing physics in the source and in the underlying environment model, source misidentification, and mismodeling of the astrophysical population. We also provide a rough estimate of when each of these causes will become important for tests of GR for different detector sensitivities. We argue that each of these causes should be thoroughly investigated, quantified, and ruled out before claiming a GR violation in GW observations.Comment: Review article; 1 figure; 1 table; comments welcom
    corecore