11,211 research outputs found
Absorbed dose measurements and predictions on LDEF
The overall radiation environment of the Long Duration Exposure Facility (LDEF) was determined in part through the use of thermoluminescent detectors (TLD's) which were included in several experiments. The results given are from four experiments (A0015 Biostack, M0004 Fiber Optics Data Link, P0004 Seeds in Space, and P0006 Linear Energy Transfer Spectrum Measurement) and represent a large fraction of existing absorbed dose data. The TLD's were located on the leading and the trailing edges and the Earth end of the spacecraft under various shielding depths (0.48 to 15.4 g/sq cm). The measured absorbed doses were found to reflect both directional dependence of incident trapped protons and shielding. At the leading edge, doses ranged from 2.10 to 2.58 Gy under shielding of 2.90 to 1.37 g/sq cm Al equivalent (M0004). At the trailing edge, doses varied from 3.04 to 4.49 Gy under shielding of 11.7 to 3.85 g/sq cm (A0015), doses varied from 2.91 to 6.64 Gy under shielding of 11.1 to 0.48 g/sq cm (P0004), and a dose range of 2.66 to 6.48 Gy was measured under shielding of 15.4 to 0.48 g/sq cm (P0006). At the Earth end of the spacecraft, doses from 2.41 to 3.93 Gy were found under shielding of 10.0 to 1.66 g/sq cm (A0015). The effect of the trapped proton anisotropy was such that the western side of LDEF received more than 2 times the dose of the eastern side at shielding depths of approximately 1 g/sq cm. Calculations utilizing a directional model of trapped proton spectra predict smaller doses than those measured, being about 50 percent of measured values at the trailing edge and Earth end, and about 80 percent near the leading edge
Time Delay Interferometry for LISA with one arm dysfunctional
In order to attain the requisite sensitivity for LISA - a joint space mission
of the ESA and NASA- the laser frequency noise must be suppressed below the
secondary noises such as the optical path noise, acceleration noise etc. By
combining six appropriately time-delayed data streams containing fractional
Doppler shifts - a technique called time delay interferometry (TDI) - the laser
frequency noise may be adequately suppressed. We consider the general model of
LISA where the armlengths vary with time, so that second generation TDI are
relevant. However, we must envisage the possibility, that not all the optical
links of LISA will be operating at all times, and therefore, we here consider
the case of LISA operating with two arms only. As shown earlier in the
literature, obtaining even approximate solutions of TDI to the general problem
is very difficult. Since here only four optical links are relevant, the
algebraic problem simplifies considerably. We are then able to exhibit a large
number of solutions (from mathematical point of view an infinite number) and
further present an algorithm to generate these solutions
Prediction of LDEF ionizing radiation environment
The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements
Three-dimensional shielding effects on charged particle fluences measured in the P0006 experiment of LDEF
Three-dimensional shielding effects on cosmic ray charged particle fluences were measured with plastic nuclear track detectors in the P0006 experiment on Long Duration Exposure Facility (LDEF). The azimuthal and polar angle distributions of the galactic cosmic ray particles (mostly relativistic iron) were measured in the main stack and in four side stacks of the P0006 experiment, located on the west end of the LDEF satellite. A shadowing effect of the shielding of the LDEF satellite is found. Total fluence of stopping protons was measured as a function of the position in the main and side stacks of the P0006 experiment. Location dependence of total track density is explained by the three-dimensional shielding model of the P0006 stack. These results can be used to validate 3D mass model and transport code calculations and also for predictions of the outer radiation environment for the Space Station Freedom
Asymmetry Function of Interstellar Scintillations of Pulsars
A new method for separating intensity variations of a source's radio emission
having various physical natures is proposed. The method is based on a joint
analysis of the structure function of the intensity variations and the
asymmetry function, which is a generalization of the asymmetry coefficient and
characterizes the asymmetry of the distribution function of the intensity
fluctuations on various scales for the inhomogeneities in the diffractive
scintillation pattern. Relationships for the asymmetry function in the cases of
a logarithmic normal distribution of the intensity fluctuations and a normal
distribution of the field fluctuations are derived. Theoretical relationships
and observational data on interstellar scintillations of pulsars (refractive,
diffractive, and weak scintillations) are compared. Pulsar scintillations match
the behavior expected for a normal distribution of the field fluctuations
(diffractive scintillation) or logarithmic normal distribution of the intensity
fluctuations (refractive and weak scintillation). Analysis of the asymmetry
function is a good test for distinguishing scintillations against the
background of variations that have different origins
Predictions of LET spectra measured on LDEF
The linear energy transfer (LET) spectra measured by plastic (CR-39) detectors in Exp. P0006 on LDEF are much higher at high LET than expected from methods commonly used to predict LET spectra produced by the space ionizing radiation environment. This discrepancy is being investigated by examining modeling approximations used in the predictions, and some interim results are presented
Two-Dimensional Sigma-Hole Systems in Boron Layers: A First-Principles Study on Mg_{1-x}Na_xB_2 and Mg_{1-x}Al_xB_2
We study two-dimensional sigma-hole systems in boron layers by calculating
the electronic structures of Mg_{1-x}Na_xB_2 and Mg_{1-x}Al_xB_2. In
Mg_{1-x}Na_xB_2, it is found that the concentration of sigma holes is
approximately described by (0.8 + 0.8 x) * 10^{22} cm^{-3} and the largest
attainable concentration is about 1.6 * 10^{22} cm^{-3} in NaB_2. In
Mg_{1-x}Al_xB_2, on the other hand, it is found that the concentration of sigma
holes is approximately described by (0.8 - 1.4 x) * 10^{22} cm^{-3} and sigma
holes are disappeared at x of about 0.6. These relations can be used for
experimental studies on the sigma-hole systems in these materials.Comment: 5 pages, 5 figure
Generating random density matrices
We study various methods to generate ensembles of random density matrices of
a fixed size N, obtained by partial trace of pure states on composite systems.
Structured ensembles of random pure states, invariant with respect to local
unitary transformations are introduced. To analyze statistical properties of
quantum entanglement in bi-partite systems we analyze the distribution of
Schmidt coefficients of random pure states. Such a distribution is derived in
the case of a superposition of k random maximally entangled states. For another
ensemble, obtained by performing selective measurements in a maximally
entangled basis on a multi--partite system, we show that this distribution is
given by the Fuss-Catalan law and find the average entanglement entropy. A more
general class of structured ensembles proposed, containing also the case of
Bures, forms an extension of the standard ensemble of structureless random pure
states, described asymptotically, as N \to \infty, by the Marchenko-Pastur
distribution.Comment: 13 pages in latex with 8 figures include
Fission foil measurements of neutron and proton fluences in the A0015 experiment
Results are given from sets of fission foil detectors (FFD's) (Ta-181, Bi-209, Th-232, U-238) which were included in the A0015 experiment to measure combined proton/neutron fluences. Use has been made of recent FFD high energy proton calibrations for improved accuracy of response. Comparisons of track density measurements have been made with the predictions of environmental modeling based on simple 1-D (slab) geometry. At 1 g/cm(exp 2) (trailing edge) the calculations were approximately 25 percent lower than measurements; at 13 g/cm(exp 2) (Earthside) calculations were more than a factor of 2 lower. A future 3-D modeling of the experiment is needed for a more meaningful comparison. Approximate mission proton doses and neutron dose equivalents were found. At Earthside (13 g/cm(exp 2) the dose was 171 rad and dose equivalent was 82 rem. At the trailing edge (1 g/cm(exp 2) dose was 315 rad and dose equivalent was 33 rem. The proton doses are less than expected from TLD doses by 16 percent and 37 percent, respectively. These differences can be explained by uncertainties in the proton and neutron spectra and in the method used to separate proton and neutron contributions to the measurements
Compressible Sub-Alfvenic MHD turbulence in Low-beta Plasmas
We present a model for compressible sub-Alfvenic isothermal
magnetohydrodynamic (MHD) turbulence in low-beta plasmas and numerically test
it. We separate MHD fluctuations into 3 distinct families - Alfven, slow, and
fast modes. We find that, production of slow and fast modes by Alfvenic
turbulence is suppressed. As a result, Alfven modes in compressible regime
exhibit scalings and anisotropy similar to those in incompressible regime. Slow
modes passively mimic Alfven modes. However, fast modes show isotropy and a
scaling similar to acoustic turbulence.Comment: 4 pages, 8 figures, Phys. Rev. Lett., in pres
- …