17 research outputs found

    Ergogenic effects of betaine supplementation on strength and power performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the ergogenic effects of betaine (B) supplementation on strength and power performance.</p> <p>Methods</p> <p>Twelve men (mean ± SD age, 21 ± 3 yr; mass, 79.1 ± 10.7 kg) with a minimum of 3 months resistance training completed two 14-day experimental trials separated by a 14-day washout period, in a balanced, randomized, double-blind, repeated measures, crossover design. Prior to and following 14 days of twice daily B or placebo (P) supplementation, subjects completed two consecutive days (D1 and D2) of a standardized high intensity strength/power resistance exercise challenge (REC). Performance included bench, squat, and jump tests.</p> <p>Results</p> <p>Following 14-days of B supplementation, D1 and D2 bench throw power (1779 ± 90 and 1788 ± 34 W, respectively) and isometric bench press force (2922 ± 297 and 2503 ± 28 N, respectively) were increased (p < 0.05) during REC compared to pre-supplementation values (1534 ± 30 and 1498 ± 29 W, respectively; 2345 ± 64 and 2423 ± 84 N, respectively) and corresponding P values (1374 ± 128 and 1523 ± 39 W; 2175 ± 92 and 2128 ± 56 N, respectively). Compared to pre-supplementation, vertical jump power and isometric squat force increased (p < 0.05) on D1 and D2 following B supplementation. However, there were no differences in jump squat power or the number of bench press or squat repetitions.</p> <p>Conclusion</p> <p>B supplementation increased power, force and maintenance of these measures in selected performance measures, and these were more apparent in the smaller upper-body muscle groups.</p

    Rehydration with fluid of varying tonicities: Effects on fluid regulatory hormones and exercise performance in the heat

    No full text
    This study examined the effects of rehydration (Rehy) with fluids of varying tonicities and routes of administration after exercise-induced hypohydration on exercise performance, fluid regulatory hormone responses, and cardiovascular and thermoregulatory strain during subsequent exercise in the heat. On four occasions, eight men performed an exercise-dehydration protocol of ∼185 min (33° C) to establish a 4% reduction in body weight. Following dehydration, 2% of the fluid lost was replaced during the first 45 min of a 100-min rest period by one of three random Rehy treatments (0.9% saline intravenous; 0.45% saline intravenous; 0.45% saline oral) or no Rehy (no fluid) treatment. Subjects then stood for 20 min at 36°C and then walked at 50% maximal oxygen consumption for 90 min. Subsequent to dehydration, plasma Na+, osmolality, aldosterone, and arginine vasopressin concentrations were elevated (P \u3c 0.05) in each trial, accompanied by a -4% hemoconcentration. Following Rehy, there were no differences (P \u3e 0.05) in fluid volume restored, post-rehydration (Post-Rehy) body weight, or urine volume. Percent change in plasma volume was 5% above pre-Rehy values, and plasma Na+, osmolality, and fluid regulatory hormones were lower compared with no fluid. During exercise, skin and core temperatures, heart rate, and exercise time were not different (P \u3e 0.05) among the Rehy treatments. Plasma osmolality, Na+, percent change in plasma volume, and fluid regulatory hormones responded similarly among all Rehy treatments. Neither a fluid of greater tonicity nor the route of administration resulted in a more rapid or greater fluid retention, nor did it enhance heat tolerance or diminish physiological strain during subsequent exercise in the heat

    Interleukin-6 responses to water immersion therapy after acute exercise heat stress: A pilot investigation

    No full text
    Context: Cold-water immersion is the criterion standard for treatment of exertional heat illness. Cryotherapy and water immersion also have been explored as ergogenic or recovery aids. The kinetics of inflammatory markers, such as interleukin-6 (IL-6), during cold-water immersion have not been characterized. Objective: To characterize serum IL-6 responses to water immersion at 2 temperatures and, therefore, to initiate further research into the multidimensional benefits of immersion and the evidence-based selection of specific, optimal immersion conditions by athletic trainers. Design: Controlled laboratory study. Setting: Human performance laboratory Patients or Other Participants: Eight college-aged men (age = 22 ± 3 years, height = 1.76 ± 0.08 m, mass = 77.14 ± 9.77 kg, body fat = 10% ± 3%, and maximal oxygen consumption = 50.48 ± 4.75 mL·kg -1·min-1). Main Outcome Measures: Participants were assigned randomly to receive either cold (11.70°C ± 2.02°C, n = 4) or warm (23.50°C ± 1.00°C, n = 4) water-bath conditions after exercise in the heat (temperature = 37°C, relative humidity = 52%) for 90 minutes or until volitional cessation. Results: Whole-body cooling rates were greater in the cold water-bath condition for the first ± minutes of water immersion, but during the 90-minute, postexercise recovery, participants in the warm and cold water-bath conditions experienced similar overall whole-body cooling. Heart rate responses were similar for both groups. Participants in the cold water-bath condition experienced an overall slight increase (30.54% ± 77.37%) in IL-6 concentration, and participants in the warm water-bath condition experienced an overall decrease (-69.76% ± 15.23%). Conclusions: We have provided seed evidence that coldwater immersion is related to subtle IL-6 increases from postexercise values and that warmer water-bath temperatures might dampen this increase. Further research will elucidate any anti-inflammatory benefit associated with water-immersion treatment and possible multidimensional uses of cooling therapies
    corecore