64 research outputs found

    Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction

    Get PDF
    Hydrogen has received significant attention as a promising future energy carrier due to its high energy density and environmentally friendly nature. In particular, the electrocatalytic generation of hydrogen fuel is highly desirable to replace current fossil fuel-dependent hydrogen production methods. However, to achieve widespread implementation of electrocatalytic hydrogen production technology, the development of highly active and durable electrocatalysts based on Earth-abundant elements is of prime importance. In this context, nanostructured molybdenum sulfides (MoS x ) have received a great deal of attention as promising alternatives to precious metal-based catalysts. In this focus review, we summarize recent efforts towards identification of the active sites in MoS x -based electrocatalysts for the hydrogen evolution reaction (HER). We also discuss recent synthetic strategies for the engineering of catalyst structures to achieve high active site densities. Finally, we suggest ongoing and future research challenges in the design of advanced MoS x -based HER electrocatalysts

    Applying Topological and Economical Principles in Catalyst Design: New Alumina–Cobalt Core–Shell Catalysts

    No full text
    Designing new and effective catalysts may be an art, but its consequences are very real and pragmatic. That said, chemists often build designs on ideal systems, whereas the manufg. of chems. requires catalysts that withstand varied feeds, harsh conditions and long exposure times. Moreover, economical considerations are often underestimated at the catalyst design stage. Here we discuss the inclusion of economical and topol. considerations early on in the catalyst design process, giving as an example the synthesis and testing of a new type of alumina​/cobalt Fischer-​Tropsch catalysts
    corecore