5 research outputs found

    Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles

    Get PDF
    Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single- and double-dose nanotherapy with fluorophore-labeled and paclitaxel-loaded polymeric micelles. Using computed tomography-fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR-based tumor accumulation significantly increases during treatment, especially for more efficient double-dose nanotaxane therapy. Furthermore, for double-dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g–1) upon the first administration to 15% ID g–1 upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation

    Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders

    No full text
    Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies

    β-Sitosterol Alters the Inflammatory Response in CLP Rat Model of Sepsis by Modulation of NFκB Signaling

    No full text
    Purpose. Sepsis originates from the host inflammatory response, especially to bacterial infections, and is considered one of the main causes of death in intensive care units. Various agents have been developed to inhibit mediators of the inflammatory response; one prospective agent is β-sitosterol (βS), a phytosterol with a structure similar to cholesterol. This study is aimed at evaluating the effects of βS on the biomarkers of inflammation and liver function in cecal ligation and puncture- (CLP-) induced septic rats. Methods. Thirty male Wistar rats were divided equally into six groups as follows: sham, CLP, CLP+dexamethasone (DX, 0.2 mg/kg), CLP+βS (1 mg/kg), CLP+imipenem (IMI, 20 mg/kg), and CLP+IMI (20 mg/kg)+βS (1 mg/kg). Serum levels of IL-1β, IL-6, IL-10, AST, ALT, and liver glutathione (GSH) were assessed by ELISA. Liver expression levels of TNF-α and NF-κBi mRNAs were evaluated by RT-qPCR. Results. Serum concentrations of IL-1β, IL-6, IL-10, ALT, and AST and mRNA levels of TNF-α and NF-κBi were all significantly higher in septic rats than in normal rats (p<0.05). Liver GSH content was markedly lower in the CLP group than that in the sham group. βS-treated rats had remarkably lower levels of IL-1β, IL-6, IL-10, TNF-α, NF-κBi, AST, and ALT (51.79%, 62.63%, 41.46%, 54.35%, 94.37%, 95.30%, 34.87%, and 46.53% lower, respectively) and greater liver GSH content (35.71% greater) compared to the CLP group (p<0.05). Conclusion. βS may play a protective role in the septic process by mitigating inflammation. This effect is at least partly mediated by inhibition of the NF-κB signaling pathway. Thus, βS can be considered as a supplementary treatment in septic patients

    Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders

    No full text
    Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies

    Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders

    Get PDF
    Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies
    corecore