3 research outputs found
The Contribution of Phospholipase A2 and Metalloproteinases to the Synergistic Action of Viper Venom on the Bioenergetic Profile of Vero Cells
Increasing concern about the use of animal models has stimulated the development of in vitro cell culture models for analysis of the biological effects of snake venoms. However, the complexity of animal venoms and the extreme synergy of the venom components during envenomation calls for critical review and analysis. The epithelium is a primary target for injected viper venom’s toxic substances, and therefore, is a focus in modern toxinology. We used the Vero epithelial cell line as a model to compare the actions of a crude Macrovipera lebetina obtusa (Levantine viper) venom with the actions of the same venom with two key enzymatic components inhibited (specifically, phospholipase A2 (PLA2) and metalloproteinases) in the bioenergetic cellular response, i.e., oxygen uptake and reactive oxygen species generation. In addition to the rate of free-radical oxidation and lipid peroxidation, we measured real-time mitochondrial respiration (based on the oxygen consumption rate) and glycolysis (based on the extracellular acidification rate) using a Seahorse analyzer. Our data show that viper venom drives an increase in both glycolysis and respiration in Vero cells, while the blockage of PLA2 or/and metalloproteinases affects only the rates of the oxidative phosphorylation. PLA2-blocking in venom also increases cytotoxic activity and the overproduction of reactive oxygen species. These data show that certain components of the venom may have a different effect within the venom cocktail other than the purified enzymes due to the synergy of the venom components
Pathomorphology of the brain in the acute form of African swine fever
The brains of 10 infected pigs were examined for histopathology and presence of African swine fever virus (ASFV) DNA ASFV infection induces inflamed meninges, cerebral edema and vascular thrombosis, as well as subdural hematomas. Slight tension in the dura mater, flattening of the gyri and narrowing of the sulci were also observed at four days post infection (dpi). Enlarged perivascular spaces were detected for most vessels of the brain after three to four dpi. Considerable lymphocytic infiltration of the brain tissue was observed at the terminal stage of disease. ASFV was present in all investigated areas of brain beginning from three to four dpi. The isolated virus do not differ from the used in present study Georgia 2007 strain
Changes in microglia activity of rat brain induced by Macrovipera lebetina obtusa venom
Aim: The microglia activity of rat brain following exposure of the Macrovipera lebetina obtusa venom was investigated.Methods: Histochemical analysis of brain microcirculatory bed staining by Ca2+ ATPase method for variable doses after intraperitoneal injections given for different time periods was used. The hemorrhagic activity of snake venom metalloproteinases was tested. Toxicological data were calculated using Behrens and Miller-Tainter methods. Surface, size of brain microglial cells (MGCs) and staining intensity were quantified using ImageJ software.Results: The vasodestructive action of the venom resulted in changes in ATPase activity. The intensity of staining of rat brain microcirculatory bed was venom dose-, and time-dependent. Increased activity of MGCs in hemorrhagic loci of different regions of venom affected brain was also demonstrated.Conclusion: The activation of microglia and changes of its form, size, and position strongly correlates with hemorrhage-induced cerebrovascular damage