6 research outputs found

    Brunswick simulation scenario for virtual-stops based DRT services with SUMO

    Get PDF
    This paper presents a general simulation scenario with SUMO of the City of Brunswick, Germany, was set up using traffic network data from OSM and the traffic demand from TAPAS (TAPAS 2017). In this paper the developed simulation scenario is published for other researchers to use and extend. A simulation scenario has been set up and evaluated. The developed scenario includes a simulation of the whole city area of Brunswick. Furthermore, key performance indicators (KPIs) have been chosen to find optimal positions for virtual bus stops for autonomous shuttles. The simulation scenarios give findings of the effect of the position of a virtual bus stop on the traffic flow and the traffic safety. In combination with the walking time to this stop these KPIs give a decision basis for the position of the stop

    A Tool for Simulating Demand Responsive Transport Systems in SUMO

    Get PDF
    Demand responsive transport (DRT) has become very important in the last years and is being tested in different cities worldwide. Due to the complexity and diversity of these services, their planning is quite challenging. This paper introduces a tool to simulate different types of DRT services. The open source micro-simulation Eclipse SUMO (Simulation of Urban MObility) is used as a framework. The tool was written in Python and calculates the best routes for each DRT vehicle based on information about requests, vehicle fleet and network. As test case, multiple requests between a peri-urban area and the city center of Brunswick (Germany) were simulated for different DRT services. The results show the practicality of the tool as a form of analysis and planning of DRT systems

    Simulation of Demand Responsive Transport using a dynamic scheduling tool with SUMO

    No full text
    Demand responsive transport (DRT) has been increasingly tested and applied in recent years as a new form of transportation that seeks to address mobility problems in cities and rural areas. The planning of DRT systems is a challenging task for transport planners since the performance of the service depends significantly on the demand, how the scheduling is made, and how the routes are computed. Transport simulations are a useful option to evaluate these systems. The paper presents a Python tool, which aims to simulate diverse DRT services using the software package for microscopic simulations Eclipse SUMO (Simulation of Urban MObility) as a framework. The fleet and requests of the DRT are handled dynamically by the scheduling module of the tool. This module is also responsible for calling a solver algorithm for the Dial-a-Ride-Problem (DARP), processing its results, and dispatching the DRT vehicles according to them. The tool also enables easier implementation of other methods to solve the DARP. To demonstrate the use of the tool, a DRT service operating in two central neighborhoods of the city of Brunswick (Germany) is presented. The tool is called drtOnline.py and is included in SUMO since version 1.9.

    Optimierung der Buslinie 450 in Braunschweig durch On-Demand-Zubringer

    Get PDF
    Die vorliegende Masterarbeit untersucht den Einsatz eines Trunk-and-Feeder-Systems zur Optimierung des bestehenden ÖPNV in einer ländlichen Region nahe Braunschweig. Das System deckt die stark nachgefragte Verbindung in die Stadt Braunschweig mit einem BusRapid-Transit (BRT) System ab. Das BRT-System wird durch ein On-Demand (OD) Zubringersystem ergänzt. Ebenfalls ist die Ergänzung des BRT-Systems durch den nichtmotorisierten Individualverkehr (NMIV) vorgesehen. Der Fokus dieser Arbeit liegt in der Analyse der möglichen Implementierung und des theoretischen Potenzials des vorgeschlagenen Trunk-and-Feeder-Systems. Des Weiteren analysiert die Arbeit das Bündelungspotenzial, die Kapazität und die Leistung des ODZubringersystems. Hierfür werden zuerst die vorgeschlagenen Systeme (BRT, OD-Zubringer und NMIV) und deren Mobilitätsschnittpunkte (Mobilstationen) geplant. Anschließend wird das Verbesserungspotenzial des geplanten Trunk-and-Feeder-Systems im Vergleich zum bestehenden ÖPNV mithilfe von Verkehrssimulationen mit dem Programm „Eclipse SUMO“ quantitativ abgeschätzt. Die Datengrundlage für die Simulationen basiert auf einer bestehenden Verkehrssimulation der Stadt Braunschweig. Die Simulation der ODZubringersysteme erfolgte mit einem selbst entwickelten Algorithmus, der anhand der erhaltenen Anfragen an das System die optimale Route für jedes Fahrzeug sucht. Die Erzeugung der Anfragen an das OD-Zubringersystem wurde mit dem Programm „Ver_Bau“ anhand der Einwohnerzahl geschätzt. Die Simulationsergebnisse zeigen das hohe Potenzial und die Vorteile des vorgeschlagenen Trunk-and-Feeder-Systems deutlich. Die Reisezeiten von Tür zu Tür wurden im Durschnitt um 46% (17 Minuten) reduziert, wodurch die durchschnittlichen Umwegfaktoren von 1,77 auf 0,95 gesunken sind. Dies entspricht einer gesteigerten Attraktivität des ÖPNV im Vergleich zum privaten Fahrzeug. Durch die Nutzung des Trunk-and-Feeder-Systems konnte das Betriebsgebiet auf zwei weitere Dörfer ausgebaut werden, sodass ein großes Potenzial für Neukundengewinnung besteht und die Problematik der fehlenden Mobilität in ländlichen Räumen adressiert. Dank der Verminderung der Umlaufzeiten kann mit vier BRT-Bussen eine Taktung von 15-Minuten gewährleistet werden. Die Analyse verschiedener Fuhrparkvarianten für die OD-Zubringersysteme zeigte, dass die Anwendung von zwei kleinen Fahrzeugen mit einer Kapazität von je sechs Passagieren die optimale Variante darstellt. Die durchschnittliche Anzahl der pro Fahrt und Fahrzeug beförderten Personen liegt abhängig von dem ODZubringersystem zwischen vier und sieben. Die Personalkosten der OD-Zubringersysteme (Fahrer) sind mit 83% die kostenintensivste Position der Betriebskosten, sodass der Einsatz von autonomen Fahrzeugen in naher Zukunft zur Verbesserung der Wirtschaftlichkeit beitragen kann. Als zusammenfassendes Ergebnis ist festzuhalten: Der Einsatz von Trunk-and-FeederSystemen mit OD-Zubringersystemen kann die Attraktivität des ÖPNV in ländlichen Räumen steigern

    An ant colony algorithm with penalties for the dial-a-ride problem with time windows and capacity restriction

    No full text
    This paper proposes a metaheuristic algorithm to solve the dial-a-ride problem (DARP) with time windows and capacity restrictions. The algorithm was developed for the project "HubChain", which proposes an on demand system being integrated with local public transport in the Elde rural region, in northern Germany. Users can request their trips via an online platform by providing the origin and destination as well as the desired arrival or departure time. To solve the problem, ant colony optimization with penalties (ACOP) is developed based on the algorithm of Dorigo, in which the ants communicate pheromones both locally and globally and meanwhile the constraints are handled by setting penalties. To validate the results, the proposed algorithm and an exact algorithm were run for multiple test scenarios using the simulation SUMO as a framework. The routes obtained with the proposed algorithm show travel times comparable to the optimal routes, yet obtained in low computation times. This allows therefore the implementation of the proposed ACOP algorithm in a dynamic booking system

    Simulating demand responsive feeder transit services: A case study of Braunschweig

    Get PDF
    Public transport systems in rural and peri-urban areas are in many cases characterizedby long travel times, low frequencies and irregular services. Because of this, motorizedprivate transport is often the only practicable mode of mobility in this regions. The use ofDemand Responsive Transport (DRT) as feeder systems to mass public transport modespresents a great potential for improvement. This paper investigates the potential of sucha system applied to a case-study of a peri-urban area of Brunswick, Germany. For that,the current bus line was replaced by a Bus Rapid Transit (BRT) line with DRT as feedersystems. In order to evaluate the performance of the proposed system and provide abenchmark against the current public transport offer, multiple trips to the city center withthe different transport modes were simulated. The agent-based microscopic simulationEclipse SUMO (Simulation of Urban MObility) was used as framework. The scenario ofthe DRT systems was simulated by SUMO coupled to a developed dispatching algorithm.The results show the potential of the proposed system due to the lower travel times, higherfrequency and grater service area. Travel times were even comparable with the travel timesof private car-based modes, which could lead to a potential increase in deman
    corecore