33 research outputs found

    Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells

    Get PDF
    Senescence is a stable proliferation arrest characterized by profound changes in cellular morphology and metabolism as well as by extensive chromatin reorganization in the nucleus. One particular hallmark of chromatin changes during senescence is the formation of punctate DNA foci in DAPI-stained senescent cells that have been called senescence-associated heterochromatin foci (SAHF). While many advances have been made concerning our understanding of the effectors of senescence, how chromatin is reorganized and maintained in senescent cells has remained largely elusive. Because chromatin structure is inherently dynamic, senescent cells face the challenge of developing chromatin maintenance mechanisms in the absence of DNA replication in order to maintain the senescent phenotype. Here, we summarize and review recent findings shedding light on SAHF composition and formation via spatial repositioning of chromatin, with a specific focus on the role of lamin B1 for this process. In addition, we discuss the physiological implication of SAHF formation, the role of histone variants, and histone chaperones during senescence and also elaborate on the more general changes observed in the epigenome of the senescent cells

    Regulation of Replication Fork Progression Through Histone Supply and Demand

    Get PDF
    DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone chaperone Asf1 and MCM2-7, the putative replicative helicase, are connected through a histone H3-H4 bridge. Depletion of Asf1 by RNA interference impedes DNA unwinding at replication sites, and similar defects arise from overproduction of new histone H3-H4 that compromises Asf1 function. These data link Asf1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork progression and histone supply and demand

    Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork

    Get PDF
    International audienceMCM2 is a subunit of the replicative helicase machinery shown to interact with histones H3 and H4 during the replication process through its N-terminal domain. During replication, this interaction has been proposed to assist disassembly and assembly of nu-cleosomes on DNA. However, how this interaction participates in crosstalk with histone chaperones at the replication fork remains to be elucidated. Here, we solved the crystal structure of the ternary complex between the histone-binding domain of Mcm2 and the histones H3-H4 at 2.9 Ëš A resolution. Histones H3 and H4 assemble as a tetramer in the crystal structure , but MCM2 interacts only with a single molecule of H3-H4. The latter interaction exploits binding surfaces that contact either DNA or H2B when H3-H4 dimers are incorporated in the nucleosome core particle. Upon binding of the ternary complex with the histone chaperone ASF1, the histone tetramer dissociates and both MCM2 and ASF1 interact simultaneously with the histones forming a 1:1:1:1 het-eromeric complex. Thermodynamic analysis of the quaternary complex together with structural model-ing support that ASF1 and MCM2 could form a chaperoning module for histones H3 and H4 protecting them from promiscuous interactions. This suggests an additional function for MCM2 outside its helicase function as a proper histone chaperone connected to the replication pathway

    Épigénétique : nous sommes plus que la séquence de nos gènes

    No full text
    International audienceAu coeur de chacune de nos cellules se trouve l'ADN qui est le porteur de notre information génétique. Cet ADN s'enroule autour de protéines histones pour former une structure nucléoprotéique, la chromatine, qui permet la compaction de l'ADN dans le noyau. Dans cette revue, nous verrons en quoi la chromatine n'est pas inerte mais est au contraire une structure dynamique, porteuse d'une information épigénétique qui permet la modulation de l'expression des gènes participant ainsi à définir l'identité cellulaire. Nous étudierons en quoi l'environnement cellulaire et extra-cellulaire peut influencer les modifications épigénétiques et par conséquent potentiellement altérer le phénotype cellulaire. Enfin, nous discuterons de l'héritabilité des marques épigénétiques à travers les divisions cellulaires méiotiques, soulevant la question d'une transmission à travers les générations de certaines caractéristiques acquises

    Chromatin maintenance and dynamics in senescence: a spotlight on SAHF formation and the epigenome of senescent cells

    Full text link
    Senescence is a stable proliferation arrest characterized by profound changes in cellular morphology and metabolism as well as by extensive chromatin reorganization in the nucleus. One particular hallmark of chromatin changes during senescence is the formation of punctate DNA foci in DAPI-stained senescent cells that have been called senescence-associated heterochromatin foci (SAHF). While many advances have been made concerning our understanding of the effectors of senescence, how chromatin is reorganized and maintained in senescent cells has remained largely elusive. Because chromatin structure is inherently dynamic, senescent cells face the challenge of developing chromatin maintenance mechanisms in the absence of DNA replication in order to maintain the senescent phenotype. Here, we summarize and review recent findings shedding light on SAHF composition and formation via spatial repositioning of chromatin, with a specific focus on the role of lamin B1 for this process. In addition, we discuss the physiological implication of SAHF formation, the role of histone variants, and histone chaperones during senescence and also elaborate on the more general changes observed in the epigenome of the senescent cells

    Rôle des protéines chaperons d'histones ASF1A et ASF1B humaines dans le maintien de l'organisation du génome

    No full text
    Au coeur du noyau des cellules eucaryotes se trouve l'ADN génomique organisé en une structure complexe: la chromatine. Cette organisation est essentielle pour la compaction de l'ADN et le maintien d'une identité cellulaire. L'unité de base de la chromatine, le nucléosome, est formé d'un octamère de protéines histones autour duquel s'enroule environ 147 pb de l'ADN. Au cours de ma thèse, mon attention s'est portée sur la protéine chaperon d'histones Asf1, impliquée dans la dynamique de la chromatine. J'ai abordé deux questions essentielles :(1) Quel est le rôle d'Asf1 dans la dynamique des histones au cours de la réplication ? La protéine Asf1 humaine s associe en complexe avec les histones H3-H4 et les protéines MCMs, l'hélicase putative qui déroule l'ADN lors de la réplication. J'ai montré que la déplétion d'Asf1 par siARN entraîne une progression ralentie de la phase S, ainsi qu'une diminution de la quantité d'ADN simple brin généré en amont de la fourche de réplication par l activité hélicase. Nous proposons un modèle selon lequel Asf1 participerait au transfert des histones parentales sur les brins filles de l ADN. (2) Quelles sont les fonctions spécifiques des deux isoformes humaines d'Asf1, Asf1a et Asf1b, au regard de la prolifération cellulaire ? J'ai montré que l'expression d'Asf1b, mais pas celle d'Asf1a, est corrélée avec la prolifération cellulaire et que sa déplétion altère la prolifération. Asf1b est surexprimé dans de nombreux cancers et ceci corrèle avec l'apparition de métastases et une faible survie des patientes. Nous proposons Asf1b comme un nouveau marqueur pronostique et une nouvelle cible thérapeutique potentielle dans le cancer du sein.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization

    Get PDF
    Oncogene-induced senescence is a permanent cell cycle arrest characterized by extensive chromatin reorganization. Here, we investigated the specific targeting and dynamics of histone H3 variants in human primary senescent cells. We show that newly synthesized epitope-tagged H3.3 is incorporated in senescent cells but does not accumulate in senescence-associated heterochromatin foci (SAHF). Instead, we observe that new H3.3 colocalizes with its specific histone chaperones within the promyelocytic leukemia nuclear bodies (PML-NBs) and is targeted to PML-NBs in a DAXX-dependent manner both in proliferating and senescent cells. We further show that overexpression of DAXX enhances targeting of H3.3 in large PML-NBs devoid of transcriptional activity and promotes the accumulation of HP1, independently of H3K9me3. Loss of H3.3 from pericentromeric heterochromatin upon DAXX or PML depletion suggests that the targeting of H3.3 to PML-NBs is implicated in pericentromeric heterochromatin organization. Together, our results underline the importance of the replication-independent chromatin assembly pathway for histone replacement in non-dividing senescent cells and establish PML-NBs as important regulatory sites for the incorporation of new H3.3 into chromatin
    corecore