546 research outputs found
Soft lithographic fabrication of microresonators
Using ultra-high-Q toroid microcavity masters, soft lithography is applied to fabricate polymer microcavity arrays with Q factors in excess of 10^6. This technique produces resonators with material-limited quality factors
Ultra-high-Q microcavity operation in H2O and D2O
Optical microcavities provide a possible method for boosting the detection sensitivity of biomolecules. Silica-based microcavities are important because they are readily functionalized, which enables unlabeled detection. While silica resonators have been characterized in air, nearly all molecular detections are performed in solution. Therefore, it is important to determine their performance limits in an aqueous environment. In this letter, planar microtoroid resonators are used to measure the relationship between quality factor and toroid diameter at wavelengths ranging from visible to near-IR in both H2O and D2O, and results are then compared to predictions of a numerical model. Quality factors (Q) in excess of 10^8, a factor of 100 higher than previous measurements in an aqueous environment, are observed in both H2O and D2O
Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy
Optical resonant microcavities with ultra high quality factors are widely
used for biosensing. Until now, the primary method of detection has been based
upon tracking the resonant wavelength shift as a function of biodetection
events. One of the sources of noise in all resonant-wavelength shift
measurements is the noise due to intensity fluctuations of the laser source. An
alternative approach is to track the change in the quality factor of the
optical cavity by using phase shift cavity ring down spectroscopy, a technique
which is insensitive to the intensity fluctuations of the laser source. Here,
using biotinylated microtoroid resonant cavities, we show simultaneous
measurement of the quality factor and the wavelength shift by using phase shift
cavity ring down spectroscopy. These measurements were performed for
disassociation phase of biotin-streptavidin reaction. We found that the
disassociation curves are in good agreement with the previously published
results. Hence, we demonstrate not only the application of phase shift cavity
ring down spectroscopy to microcavities in the liquid phase but also
simultaneous measurement of the quality factor and the wavelength shift for the
microcavity biosensors in the application of kinetics measurements
Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer
Several studies report that breast cancer survivors (BCS) tend to have a poor diet, as fruit, vegetable, and legume consumption is often reduced, resulting in a decreased intake of nutraceuticals. Moreover, weight gain has been commonly described among BCS during treatment, increasing recurrence rate and mortality. Improving lifestyle and nutrition after the diagnosis of BC may have important benefits on patients’ general health and on specific clinical outcomes. The Mediterranean diet (MD), known for its multiple beneficial effects on health, can be considered a nutritional pool comprising several nutraceuticals: bioactive compounds and foods with anti-inflammatory and antioxidant effects. Recent scientific advances have led to the identification of nutraceuticals that could amplify the benefits of the MD and favorably influence gene expression in these patients. Nutraceuticals could have beneficial effects in the postdiagnostic phase of BC, including helping to mitigate the adverse effects of chemotherapy and radiotherapy. Moreover, the MD could be a valid and easy-to-follow option for managing excess weight. The aim of this narrative review is to evaluate the recent scientific literature on the possible beneficial effects of consuming functional and nutraceutical foods in the framework of MD in BCS
MR blockade protects against diet induced obesity, adipocyte dysfunction and cardiac inflammation in mice, through browning of the adipose organ and modulation of autophagy
Obesity is a key factor in the development of insulin resistance (IR), cardiovascular disease, hypertension, type 2 diabetes etc. Given the near epidemic incidence of obesity in western society there is a clear need for effective treatment options. Mineralocorticoid receptor (MR) blockade has shown significant promise in transgenic mouse models of obesity in limiting IR and adipocyte dysfunction, a disease that is independent of classical MR actions (renal). Female 10-weekold C57bl6 mice were fed with normal chow or a high fat (HF) diet for 12 weeks. Mice fed HF diet were concomitantly treated for 12 weeks with drospirenone (DRSP, 6 mg/kg/day), a potent MR antagonist with antiadipogenic activity, or spironolactone (SPIRO, 20 mg/kg/day). Mice fed HF diet showed a significant increase in total body weight, fat mass, mean adipocyte size, expression of white adipose tissue (WAT) marker genes and showed impaired glucose tolerance after intraperitoneal plasma glucose tolerance test. DRSP and SPIRO prevented weight gain and white fat mass expansion induced by HF diet in parametrial, perivescical, and inguinal depots without affecting interscapular fat pad weight. Magnetic Resonance Imaging (MRI) confirmed that MR antagonists blocked the HF dietdriven expansion of abdomino-pelvic (parametrial and perivescical) fat volume. High levels of MR mRNA were detected in all depots of adipose tissue. HF fed mice showed no increase in heart or kidney weight and tissue fibrosis. Cardiac macrophage recruitment and osteopontin staining was increased in hearts of HF fed mice and reversed by both MR antagonists. Moreover, both DRSP and SPIRO prevented the impaired glucose tolerance in mice fed HF diet, and countered HF diet-induced up-regulation of WAT markers transcripts and adipocyte hypertrophy. Importantly, MR antagonists increased uncoupling protein 1 (UCP-1) positive brown-like adipocyte content in WAT, and improved metabolic activity of adipose tissue, as indicated by PET/CT imaging. In keeping with this, MR antagonism significantly increased expression of brown-like adipocyte marker genes such PRDM16, CIDEA, beta-3 adrenergic receptor (ADRB3) and UCP-1 in all WAT depots analysed. In exploring the mechanism, we demonstrated that MR antagonism induced brown adipose tissue (BAT) markers, and reduced the autophagic rate, a key remodelling process in adipocyte differentiation, in WAT depots in vivo as well as in primary cultured adipocytes. We conclude that adipocyte MR regulates BAT-like remodeling of WAT through modulation of autophagy. MR blockade therefore has promise as a novel therapeutic option for the prevention of metabolic dysfunctions and the cardiac consequences of obesity. doi:10.1016/j.ijcme.2015.05.012 Transcriptional control of ICAM-1 in human coronary artery endothelial cells by Mineralocorticoid Receptor (MR): Implications for the protective effects of MR antagonists in cardiovascular diseases V. Marzolla, A. Armani, A. Fabbri, I.Z. Jaffe, M. Caprio Laboratory of Cardiovascular Endocrinology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Pisana, Rome, Italy Department of Medicina dei Sistemi, Endocrinology Unit, S. Eugenio & CTO A. Alesini Hospitals, University Tor Vergata, Rome, Italy Molecular Cardiology Research Institute, Tufts Medical Center, Boston
Muscle-specific Perilipin2 down-regulation affects lipid metabolism and induces myofiber hypertrophy.
BACKGROUND: Perilipin2 (Plin2) belongs to a family of five highly conserved
proteins, known for their role in lipid storage. Recent data indicate that Plin2
has an important function in cell metabolism and is involved in several human
pathologies, including liver steatosis and Type II diabetes. An association
between Plin2 and lower muscle mass and strength has been found in elderly and
inactive people, but its function in skeletal muscle is still unclear. Here, we
addressed the role of Plin2 in adult muscle by gain and loss of function
experiments.
METHODS: By mean of in vivo Plin2 down-regulation (shPlin2) and overexpression
(overPlin2) in murine tibialis anterior muscle, we analysed the effects of Plin2
genetic manipulations on myofiber size and lipid composition. An analysis of
skeletal muscle lipid composition was also performed in vastus lateralis samples
from young and old patients undergoing hip surgery.
RESULTS: We found that Plin2 down-regulation was sufficient to induce a 30%
increase of myofiber cross-sectional area, independently of mTOR pathway.
Alterations of lipid content and modulation of genes involved in lipid synthesis
occurred in hypertrophic muscles. In particular, we showed a decrease of
triglycerides, ceramides, and phosphatidylcoline:phosphatidylethanolamine ratio,
a condition known to impact negatively on muscle function. Plin2 overexpression
did not change fibre size; however, lipid composition was strongly affected in a
way that is similar to that observed in human samples from old patients.
CONCLUSIONS: Altogether these data indicate that Plin2 is a critical mediator for
the control of muscle mass, likely, but maybe not exclusively, through its
critical role in the regulation of intracellular lipid content and composition
Analysis of the sanitary survey 2015-2017 conducted in the Gulf of La Spezia (Italy): reclassification of the areas of production of live bivalve molluscs.
The sanitary survey is aimed at classify-ingNoand monitoring the production areas of live bivalve molluscs (LBM) and it is performed using standards that are provided by the Centre for Environment, Fisheries and Aquaculture Science’s Guide to Good Practice. In this study, data from the sanitary survey carried out by the Asl5 Spezzino on the production areas of the gulf of La Spezia during the period 2015-2017 were analysed. The number and type of the analysis performed both on the total sampling and on the individual target species, as well as the number and type of found non-com-pliance (assessed on both mandatory parameters and on parameters fixed by the local monitoring plan) were considered. Data were also compared with those from the sanitary survey 2012-2014. Appropriate statistic tests were used to evaluate data from E. coli and Norovirus monitoring. Overall, 4306 analysis were performed, especially on the species M. galloprovin-cialis (89%) and they were mostly focused on to the search of biological agents. 160 NC were detected. Most of the NC concerns the Norovirus’s positivity (93.75%) in M. galloprovincialis and C. gigas. A correlation between the levels of E. coli and rain-fall/seasonality (higher levels in the colder months) was proved, especially in the sampling points located in the inner part of the dam and in the Portovenere Bay. Class B was reconfirmed for M. galloprovincialis, the production areas of C. gigas were reclassified as A and those of V. verrucosa were definitively closed. The sanitary sur-vey was therefore confirmed as a useful tool for reclassification and for monitoring LBM production areas
An Authentication Survey on Retail Seafood Products Sold on the Bulgarian Market Underlines the Need for Upgrading the Traceability System
Economically motivated or accidental species substitutions lead to economic and potential health damage to consumers with a loss of confidence in the fishery supply chain. In the present study, a three-year survey on 199 retail seafood products sold on the Bulgarian market was addressed to assess: (1) product authenticity by molecular identification; (2) trade name compliance to the list of official trade names accepted in the territory; (3) adherence of the list in force to the market supply. DNA barcoding on mitochondrial and nuclear genes was applied for the identification of whitefish (WF), crustaceans (C) and mollusks (cephalopods-MC; gastropods-MG; bivalves-MB) except for Mytilus sp. products for which the analysis was conducted with a previously validated RFLP PCR protocol. Identification at the species level was obtained for 94.5% of the products. Failures in species allocation were reconducted due to low resolution and reliability or the absence of reference sequences. The study highlighted an overall mislabeling rate of 11%. WF showed the highest mislabeling rate (14%), followed by MB (12.5%), MC (10%) and C (7.9%). This evidence emphasized the use of DNA-based methods as tools for seafood authentication. The presence of non-compliant trade names and the ineffectiveness of the list to describe the market species varieties attested to the need to improve seafood labeling and traceability at the national level
Gender differences in body composition, dietary patterns, and physical activity: insights from a cross-sectional study
Introduction This study investigates the interplay between body composition, dietary patterns, and physical activity across genders, focusing on gender-specific differences in food preferences and eating behaviors. Understanding these interactions is crucial for developing targeted nutritional and lifestyle interventions.Methods A cross-sectional study was conducted with 1,333 participants (58.7% female, 41.3% male), aged 18-65 years. Participants were categorized into tertiles based on their fat mass to fat-free mass (FM-to-FFM) ratio. Data on dietary choices, eating behaviors, and physical activity were collected and analyzed to identify gender-specific trends.Results Significant gender-specific differences were observed in food preferences and eating behaviors. Males experienced greater hunger in the late afternoon, while females felt more hunger in the morning. Males showed a preference for processed and red meats, whereas females preferred cooked vegetables. Eating behaviors such as meal skipping, uncontrolled eating, nocturnal eating, and taste preferences (sweet or salty) varied distinctly between FM-to-FFM tertiles and genders. Higher FM-to-FFM ratios correlated with lower physical activity levels, particularly in strength training and general sports engagement.Discussion These findings highlight the complex interactions between body composition, dietary habits, and lifestyle factors, emphasizing gender-specific differences. The results suggest that body composition and BMI significantly impact health-related behaviors, necessitating tailored interventions to address these differences and promote healthier lifestyles
- …