204 research outputs found
High plasma arginine concentrations in critically ill patients suffering from hepatic failure
Objective: In physiological conditions, the liver plays an important role in the regulation of plasma arginine concentrations by taking up large amounts of arginine from the hepatic circulation. When hepatic failure is present, arginine metabolism may be disturbed. Therefore, we hypothesized high arginine plasma concentrations in critically ill patients suffering from hepatic failure. Design: We prospectively collected blood samples from a cross-section of intensive care unit patients. Setting: Surgical intensive care unit of a Dutch university medical center. Subjects: A total of 52 critically ill patients with clinical evidence of dysfunction of more than two organs were recruited. Measurements: Plasma arginine concentrations were determined by HPLC. We identified correlations of arginine concentrations with organ failure scores and laboratory variables by univariate and multiple regression analyses. Results: High plasma arginine concentrations were found in critically ill patients developing organ failure. Patients who were in the highest quartile of plasma arginine concentrations had significantly lower fibrinogen concentrations, higher lactic acid concentrations, and longer prothrombin time. Stepwise multiple regression analysis showed that concentrations of arginine were independently associated with the presence of hepatic failure (P = 0.03) and renal failure (P = 0.048). In addition, lactic acid proved to be an independent determinant of plasma arginine concentration (P = 0.014). Conclusions: Critically ill patients who suffer from hepatic failure have elevated plasma arginine concentrations. Additional arginine in the treatment of these patients can be harmful, and therefore should not be used as a standard nutritional regimen until further evaluation
Micronutrient Status of Critically Ill Patients with COVID-19 Pneumonia
Micronutrient deficiencies can develop in critically ill patients, arising from factors such as decreased intake, increased losses, drug interactions, and hypermetabolism. These deficiencies may compromise important immune functions, with potential implications for patient outcomes. Alternatively, micronutrient blood levels may become low due to inflammation-driven redistribution rather than consumption. This explorative pilot study investigates blood micronutrient concentrations during the first three weeks of ICU stay in critically ill COVID-19 patients and evaluates the impact of additional micronutrient administration. Moreover, associations between inflammation, disease severity, and micronutrient status were explored. We measured weekly concentrations of vitamins A, B6, D, and E; iron; zinc; copper; selenium; and CRP as a marker of inflammation state and the SOFA score indicating disease severity in 20 critically ill COVID-19 patients during three weeks of ICU stay. Half of the patients received additional (intravenous) micronutrient administration. Data were analyzed with linear mixed models and Pearson’s correlation coefficient. High deficiency rates of vitamins A, B6, and D; zinc; and selenium (50–100%) were found at ICU admission, along with low iron status. After three weeks, vitamins B6 and D deficiencies persisted, and iron status remained low. Plasma levels of vitamins A and E, zinc, and selenium improved. No significant differences in micronutrient levels were found between patient groups. Negative correlations were identified between the CRP level and levels of vitamins A and E, iron, transferrin, zinc, and selenium. SOFA scores negatively correlated with vitamin D and selenium levels. Our findings reveal high micronutrient deficiency rates at ICU admission. Additional micronutrient administration did not enhance levels or expedite their increase. Spontaneous increases in vitamins A and E, zinc, and selenium levels were associated with inflammation resolution, suggesting that observed low levels may be attributed, at least in part, to redistribution rather than true deficiencies.</p
Micronutrient Status of Critically Ill Patients with COVID-19 Pneumonia
Micronutrient deficiencies can develop in critically ill patients, arising from factors such as decreased intake, increased losses, drug interactions, and hypermetabolism. These deficiencies may compromise important immune functions, with potential implications for patient outcomes. Alternatively, micronutrient blood levels may become low due to inflammation-driven redistribution rather than consumption. This explorative pilot study investigates blood micronutrient concentrations during the first three weeks of ICU stay in critically ill COVID-19 patients and evaluates the impact of additional micronutrient administration. Moreover, associations between inflammation, disease severity, and micronutrient status were explored. We measured weekly concentrations of vitamins A, B6, D, and E; iron; zinc; copper; selenium; and CRP as a marker of inflammation state and the SOFA score indicating disease severity in 20 critically ill COVID-19 patients during three weeks of ICU stay. Half of the patients received additional (intravenous) micronutrient administration. Data were analyzed with linear mixed models and Pearson’s correlation coefficient. High deficiency rates of vitamins A, B6, and D; zinc; and selenium (50–100%) were found at ICU admission, along with low iron status. After three weeks, vitamins B6 and D deficiencies persisted, and iron status remained low. Plasma levels of vitamins A and E, zinc, and selenium improved. No significant differences in micronutrient levels were found between patient groups. Negative correlations were identified between the CRP level and levels of vitamins A and E, iron, transferrin, zinc, and selenium. SOFA scores negatively correlated with vitamin D and selenium levels. Our findings reveal high micronutrient deficiency rates at ICU admission. Additional micronutrient administration did not enhance levels or expedite their increase. Spontaneous increases in vitamins A and E, zinc, and selenium levels were associated with inflammation resolution, suggesting that observed low levels may be attributed, at least in part, to redistribution rather than true deficiencies.</p
Effect of Bronchoscopy on Gas Exchange and Respiratory Mechanics in Critically Ill Patients With Atelectasis: An Observational Cohort Study
Background: Atelectasis frequently develops in critically ill patients and may result in impaired gas exchange among other complications. The long-term effects of bronchoscopy on gas exchange and the effects on respiratory mechanics are largely unknown.Objective: To evaluate the effect of bronchoscopy on gas exchange and respiratory mechanics in intensive care unit (ICU) patients with atelectasis.Methods: A retrospective, single-center cohort study of patients with clinical indication for bronchoscopy because of atelectasis diagnosed on chest X-ray (CXR).Results: In total, 101 bronchoscopies were performed in 88 ICU patients. Bronchoscopy improved oxygenation (defined as an increase of PaO2/FiO2 ratio > 20 mmHg) and ventilation (defined as a decrease of > 2 mmHg in partial pressure of CO2 in arterial blood) in 76 and 59% of procedures, respectively, for at least 24 h. Patients with a low baseline value of PaO2/FiO2 ratio and a high baseline value of PaCO2 were most likely to benefit from bronchoscopy. In addition, in intubated and pressure control ventilated patients, respiratory mechanics improved after bronchoscopy for up to 24 h. Mild complications, and in particular desaturation between 80 and 90%, were reported in 13% of the patients.Conclusions: In selected critically ill patients with atelectasis, bronchoscopy improves oxygenation, ventilation, and respiratory mechanics for at least 24 h
C-Terminal Proarginine Vasopressin is Associated with Disease Outcome and Mortality, but not with Delayed Cerebral Ischemia in Critically Ill Patients with an Aneurysmal Subarachnoid Hemorrhage: A Prospective Cohort Study
Background: Aneurysmal subarachnoid hemorrhage (aSAH) is an important indication for intensive care unit admission and may lead to significant morbidity and mortality. We assessed the ability of C-terminal proarginine vasopressin (CT-proAVP) to predict disease outcome, mortality, and delayed cerebral ischemia (DCI) in critically ill patients with aSAH compared with the World Federation of Neurological Surgeons (WFNS) score and Acute Physiological and Chronic Health Evaluation IV (APACHE IV) model. Methods: C-terminal proarginine vasopressin was collected on admission in this single-center, prospective, observational cohort study. The primary aim was to investigate the relationship between CT-proAVP and poor functional outcome at 1 year (Glasgow Outcome Scale score 1–3) in a multivariable logistic regression model adjusted for WFNS and APACHE IV scores. Secondary aims were mortality and DCI. The multivariable logistic regression model for DCI was also adjusted for the modified Fisher scale. Results: In 100 patients, the median CT-proAVP level was 24.9 pmol/L (interquartile range 11.5–53.8); 45 patients had a poor 1-year functional outcome, 19 patients died within 30 days, 25 patients died within 1 year, and DCI occurred in 28 patients. Receiver operating characteristics curves revealed high accuracy for CT-proAVP to identify patients with poor 1-year functional outcome (area under the curve [AUC] 0.84, 95% confidence interval [CI] 0.77–0.92, p < 0.001), 30-day mortality (AUC 0.84, 95% CI 0.76–0.93, p < 0.001), and 1-year mortality (AUC 0.79, 95% CI 0.69–0.89, p < 0.001). CT-proAVP had a low AUC for identifying patients with DCI (AUC 0.67, 95% CI 0.55–0.79, p 0.008). CT-proAVP ≥ 24.9 pmo/L proved to be a significant predictor for poor 1-year functional outcome (odds ratio [OR] 8.04, 95% CI 2.97–21.75, p < 0.001), and CT-proAVP ≥ 29.1 pmol/L and ≥ 27.7 pmol/L were significant predictors for 30-day and 1-year mortality (OR 9.31, 95% CI 1.55–56.07, p 0.015 and OR 5.15, 95% CI 1.48–17.93, p 0.010) in multivariable models with WFNS and APACHE IV scores. CT-proAVP ≥ 29.5 pmol/L was not a significant predictor for DCI in a multivariable model adjusted for the modified Fisher scale (p = 0.061). Conclusions: C-terminal proarginine vasopressin was able to predict poor functional outcome and mortality in critically ill patients with aSAH. Its prognostic ability to predict DCI was low. Trial Registration: Nederlands Trial Register: NTR4118
Early mobilisation in critically ill COVID-19 patients:a subanalysis of the ESICM-initiated UNITE-COVID observational study
Background Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. Methods This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. Results Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p <= 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI - 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI - 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. Conclusions Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility
Greater cardiac response of colloid than saline fluid loading in septic and non-septic critically ill patients with clinical hypovolaemia
Background and objective: The haemodynamics of crystalloid and colloid fluid loading may depend on underlying disease, i.e. sepsis versus non-sepsis. Design and setting: A single-centre, single-blinded, randomized clinical trial was carried out on 24 critically ill sepsis and 24 non-sepsis patients with clinical hypovolaemia, assigned to loading with normal saline, gelatin 4%, hydroxyethyl starch 6% or albumin 5% in a 90-min (delta) central venous pressure (CVP)-guided fluid loading protocol. Transpulmonary thermodilution was done each 30 min, yielding, among others, global end-diastolic volume and cardiac indices (GEDVI, CI). Results: Sepsis patients had hyperdynamic hypotension in spite of myocardial depression and dilatation, and greater inotropic/vasopressor requirements than non-sepsis patients. Independent of underlying disease, CVP and GEDVI increased more after colloid than saline loading (P < 0.018), so that CI increased by about 2% after saline and 12% after colloid loading (P = 0.029). The increase in preload-recruitable stroke work was also greater with colloids and did not differ among conditions. Conclusion: Fluid loading with colloids results in a greater linear increase in cardiac filling, output and stroke work than does saline loading, in both septic and non-septic clinical hypovolaemia, in spite of myocardial depression and presumably increased vasopermeability potentially decreasing the effects of colloid fluid loading in the former. © The Author(s) 2010
Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy
Abstract: Purpose: Early clinical recognition of sepsis can be challenging. With the advancement of machine learning, promising real-time models to predict sepsis have emerged. We assessed their performance by carrying out a systematic review and meta-analysis. Methods: A systematic search was performed in PubMed, Embase.com and Scopus. Studies targeting sepsis, severe sepsis or septic shock in any hospital setting were eligible for inclusion. The index test was any supervised machine learning model for real-time prediction of these conditions. Quality of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, with a tailored Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklist to evaluate risk of bias. Models with a reported area under the curve of the receiver operating characteristic (AUROC) metric were meta-analyzed to identify strongest contributors to model performance. Results: After screening, a total of 28 papers were eligible for synthesis, from which 130 models were extracted. The majority of papers were developed in the intensive care unit (ICU, n = 15; 54%), followed by hospital wards (n = 7; 25%), the emergency department (ED, n = 4; 14%) and all of these settings (n = 2; 7%). For the prediction of sepsis, diagnostic test accuracy assessed by the AUROC ranged from 0.68–0.99 in the ICU, to 0.96–0.98 in-hospital and 0.87 to 0.97 in the ED. Varying sepsis definitions limit pooling of the performance across studies. Only three papers clinically implemented models with mixed results. In the multivariate analysis, temperature, lab values, and model type contributed most to model performance. Conclusion: This systematic review and meta-analysis show that on retrospective data, individual machine learning models can accurately predict sepsis onset ahead of time. Although they present alternatives to traditional scoring systems, between-study heterogeneity limits the assessment of pooled results. Systematic reporting and clinical implementation studies are needed to bridge the gap between bytes and bedside
Sildenafil attenuates pulmonary arterial pressure but does not improve oxygenation during ARDS
OBJECTIVE: Pulmonary hypertension is a characteristic feature of acute respiratory distress syndrome (ARDS) and contributes to mortality. Administration of sildenafil in ambulatory patients with pulmonary hypertension improves oxygenation and ameliorates pulmonary hypertension. Our aim was to determine whether sildenafil is beneficial for patients with ARDS. DESIGN: Prospective, open-label, multicenter, interventional cohort study. SETTING: Medical-surgical ICU of two university hospitals. PATIENTS: Ten consecutive patients meeting the NAECC criteria for ARDS. INTERVENTIONS: A single dose of 50 mg sildenafil citrate administered via a nasogastric tube. MAIN RESULTS: Administration of sildenafil in patients with ARDS decreased mean pulmonary arterial pressure from 25 to 22 mmHg (P = 0.022) and pulmonary artery occlusion pressure from 16 to 13 mmHg (P = 0.049). Systemic mean arterial pressures were markedly decreased from 81 to 75 mmHg (P = 0.005). Sildenafil did not improve pulmonary arterial oxygen tension, but resulted in a further increase in the shunt fraction. CONCLUSION: Although sildenafil reduced pulmonary arterial pressures during ARDS, the increased shunt fraction and decreased arterial oxygenation render it unsuitable for the treatment of patients with ARD
- …