34 research outputs found

    Enterobacter cloacae Outbreak and Emergence of Quinolone Resistance Gene in Dutch Hospital

    Get PDF
    Plasmid-mediated qnrA1 is an emerging resistance trait

    Evolution in Quantum Leaps: Multiple Combinatorial Transfers of HPI and Other Genetic Modules in Enterobacteriaceae

    Get PDF
    Horizontal gene transfer is a key step in the evolution of Enterobacteriaceae. By acquiring virulence determinants of foreign origin, commensals can evolve into pathogens. In Enterobacteriaceae, horizontal transfer of these virulence determinants is largely dependent on transfer by plasmids, phages, genomic islands (GIs) and genomic modules (GMs). The High Pathogenicity Island (HPI) is a GI encoding virulence genes that can be transferred between different Enterobacteriaceae. We investigated the HPI because it was present in an Enterobacter hormaechei outbreak strain (EHOS). Genome sequence analysis showed that the EHOS contained an integration site for mobile elements and harbored two GIs and three putative GMs, including a new variant of the HPI (HPI-ICEEh1). We demonstrate, for the first time, that combinatorial transfers of GIs and GMs between Enterobacter cloacae complex isolates must have occurred. Furthermore, the excision and circularization of several combinations of the GIs and GMs was demonstrated. Because of its flexibility, the multiple integration site of mobile DNA can be considered an integration hotspot (IHS) that increases the genomic plasticity of the bacterium. Multiple combinatorial transfers of diverse combinations of the HPI and other genomic elements among Enterobacteriaceae may accelerate the generation of new pathogenic strains

    Yersiniabactin Reduces the Respiratory Oxidative Stress Response of Innate Immune Cells

    Get PDF
    Enterobacteriaceae that contain the High Pathogenicity Island (HPI), which encodes the siderophore yersiniabactin, display increased virulence. This increased virulence may be explained by the increased iron scavenging of the bacteria, which would both enhance bacterial growth and limit the availability of iron to cells of the innate immune system, which require iron to catalyze the Haber-Weiss reaction that produces hydroxyl radicals. In this study, we show that yersiniabactin increases bacterial growth when iron-saturated lactoferrin is the main iron source. This suggests that yersiniabactin provides bacteria with additional iron from saturated lactoferrin during infection. Furthermore, the production of ROS by polymorphonuclear leukocytes, monocytes, and a mouse macrophage cell line is blocked by yersiniabactin, as yersiniabactin reduces iron availability to the cells. Importantly, iron functions as a catalyst during the Haber-Weiss reaction, which generates hydroxyl radicals. While the physiologic role of the Haber-Weiss reaction in the production of hydroxyl radicals has been controversial, the siderophores yersiniabactin, aerobactin, and deferoxamine and the iron-chelator deferiprone also reduce ROS production in activated innate immune cells. This suggests that this reaction takes place under physiological conditions. Of the tested iron chelators, yersiniabactin was the most effective in reducing the ROS production in the tested innate immune cells. The likely decreased bacterial killing by innate immune cells resulting from the reduced production of hydroxyl radicals may explain why the HPI-containing Enterobacteriaceae are more virulent. This model centered on the reduced killing capacity of innate immune cells, which is indirectly caused by yersiniabactin, is in agreement with the observation that the highly pathogenic group of Yersinia is more lethal than the weakly pathogenic and the non-pathogenic group

    Citrate confers less filter-induced complement activation and neutrophil degranulation than heparin when used for anticoagulation during continuous venovenous haemofiltration in critically ill patients

    Get PDF
    Background: During continuous venovenous haemofiltration (CVVH), regional anticoagulation with citrate may be superior to heparin in terms of biocompatibility, since heparin as opposed to citrate may activate complement (reflected by circulating C5a) and induce neutrophil degranulation in the filter and myeloperoxidase (MPO) release from endothelium. Methods. No anticoagulation (n = 13), unfractionated heparin (n = 8) and trisodium citrate (n = 17) regimens during CVVH were compared. Blood samples were collected pre- and postfilter; C5a, elastase and MPO were determined by ELISA. Additionally, C5a was also measured in the ultrafiltrate. Results: In the heparin group, there was C5a production across the filter which most decreased over time as compared to other groups (P = 0.007). There was also net production of elastase and MPO across the filter during heparin anticoagulation (P = 0.049 or lower), while production was minimal and absent in the no anticoagulation and citrate group, respectively. During heparin anticoagulation, plasma concentrations of MPO at the inlet increased in the first 10 minutes of CVVH (P = 0.024). Conclusion: Citrate confers less filter-induced, potentially harmful complement activation and neutrophil degranulation and less endothelial activation than heparin when used for anticoagulation during continuous venovenous haemofiltration in critically ill patients

    Genomic Diversity within the Enterobacter cloacae Complex

    Get PDF
    Background: Isolates of the Enterobacter cloacae complex have been increasingly isolated as nosocomial pathogens, but phenotypic identification of the E. cloacae complex is unreliable and irreproducible. Identification of species based on currently available genotyping tools is already superior to phenotypic identification, but the taxonomy of isolates belonging to this complex is cumbersome. Methodolgy/Principal Findings: This study shows that multilocus sequence analysis and comparative genomic hybridization based on a mixed genome array is a powerful method for studying species assignment within the E. cloacae complex. The E. cloacae complex is shown to be evolutionarily divided into two clades that are genetically distinct from each other. The younger first clade is genetically more homogenous, contains the Enterobacter hormaechei species and is the most frequently cultured Enterobacter species in hospitals. The second and older clade consists of several (sub)species that are genetically more heterogonous. Genetic markers were identified that could discriminate between the two clades and cluster 1. Conclusions/Significance: Based on genomic differences it is concluded that some previously defined (clonal and heterogenic) (sub)species of the E. cloacae complex have to be redefined because of disagreements with known or proposed nomenclature. However, further improved identification of the redefined species will be possible based on novel markers presented here. © 2008 Paauw et al. Chemicals / CAS: Bacterial Proteins; DNA, Bacteria

    The plasma level and biomarker value of neutrophil gelatinase-associated lipocalin in critically ill patients with acute kidney injury are not affected by continuous venovenous hemofiltration and anticoagulation applied

    Get PDF
    Introduction: Neutrophil gelatinase-associated lipocalin (NGAL) is a biomarker of acute kidney injury (AKI), and levels reflect severity of disease in critically ill patients. However, continuous venovenous hemofiltration (CVVH) may affect plasma levels by clearance or release of NGAL by activated neutrophils in the filter, dependent on the anticoagulation regimen applied. We therefore studied handling of NGAL by CVVH in patients with AKI.Methods: Immediately before initiation of CVVH, prefilter blood was drawn. After 10, 60, 180, and 720 minutes of CVVH, samples were collected from pre- and postfilter (in- and outlet) blood and ultrafiltrate. CVVH with the following anticoagulation regimens was studied: no anticoagulation in case of a high bleeding tendency (n = 13), unfractionated heparin (n = 8), or trisodium citrate (n = 21). NGAL levels were determined with enzyme-linked immunosorbent assay (ELISA).Results: Concentrations of NGAL at inlet and outlet were similar, and concentrations did not change over time in any of the anticoagulation groups; thus no net removal or production of NGAL occurred. Concentrations of NGAL at inlet correlated with disease severity at initiation of CVVH and at the end of a CVVH run. Concentrations of NGAL in the ultrafiltrate were lower with citrate-based CVVH (P = 0.03) and decreased over time, irrespective of anticoagulation administered (P < 0.001). The sieving coefficient and clearance of NGAL were low and decreased over time (P < 0.001).Conclusions: The plasma level and biomarker value of NGAL in critically ill patients with AKI are not affected by CVVH, because clearance by the filter was low. Furthermore, no evidence exists for intrafilter release of NGAL by neutrophils, irrespective of the anticoagulation method applied

    Reliable identification at the species level of Brucella isolates with MALDI-TOF-MS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Brucella </it>contains highly infectious species that are classified as biological threat agents. The timely detection and identification of the microorganism involved is essential for an effective response not only to biological warfare attacks but also to natural outbreaks. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is a rapid method for the analysis of biological samples. The advantages of this method, compared to conventional techniques, are rapidity, cost-effectiveness, accuracy and suitability for the high-throughput identification of bacteria. Discrepancies between taxonomy and genetic relatedness on the species and biovar level complicate the development of detection and identification assays.</p> <p>Results</p> <p>In this study, the accurate identification of <it>Brucella </it>species using MALDI-TOF-MS was achieved by constructing a <it>Brucella </it>reference library based on multilocus variable-number tandem repeat analysis (MLVA) data. By comparing MS-spectra from <it>Brucella </it>species against a custom-made MALDI-TOF-MS reference library, MALDI-TOF-MS could be used as a rapid identification method for <it>Brucella </it>species. In this way, 99.3% of the 152 isolates tested were identified at the species level, and <it>B. suis </it>biovar 1 and 2 were identified at the level of their biovar. This result demonstrates that for <it>Brucella</it>, even minimal genomic differences between these serovars translate to specific proteomic differences.</p> <p>Conclusions</p> <p>MALDI-TOF-MS can be developed into a fast and reliable identification method for genetically highly related species when potential taxonomic and genetic inconsistencies are taken into consideration during the generation of the reference library.</p

    Untargeted accurate identification of highly pathogenic bacteria directly from blood culture flasks

    No full text
    To improve the preparedness against exposure to highly pathogenic bacteria and to anticipate the wide variety of bacteria that can cause bloodstream infections (BSIs), a safe, unbiased and highly accurate identification method was developed. Our liquid chromatography-tandem mass spectrometry (LC–MS/MS)-based method can identify highly pathogenic bacteria, their near-neighbors and bacteria that are common causes of BSIs directly from positive blood culture flasks. The developed Peptide-Based Microbe Detection Engine (http://proteome2pathogen.com) relies on a two-step workflow: a genus-level search followed by a species-level search. This strategy enables the rapid identification of microorganisms based on the analyzed proteome. This method was successfully used to identify strains of Bacillus anthracis, Brucella abortus, Brucella melitensis, Brucella suis, Burkholderia pseudomallei, Burkholderia mallei, Francisella tularensis, Yersinia pestis and closely related species from simulated blood culture flasks. This newly developed LC–MS/MS method is a safe and rapid method for accurately identifying bacteria directly from positive blood culture flasks

    Molecular Epidemiology of Coagulase-Negative Staphylococci Causing Sepsis in a Neonatal Intensive Care Unit over an 11-Year Period

    No full text
    Coagulase-negative staphylococci (CoNS) are the major causative microorganisms in neonatal nosocomial sepsis. Previous studies have shown that CoNS sepsis in the neonatal intensive care unit (NICU) is caused by predominant molecular types that are widely distributed among both neonates and staff. Some of these molecular types may persist in the NICU for years. The purpose of the present study was to determine the dynamic behavior of CoNS strains causing sepsis over a prolonged period of time by determining the molecular types of all blood isolates from septicemic infants over a period of 11 years (1991 to 2001). The results show that neonatal CoNS sepsis is increasingly caused by a few predominant molecular clusters. The most striking finding was that in recent years one molecular cluster emerged as the predominant cause of neonatal CoNS sepsis, responsible for no less than 31% (20 of 65) of blood isolates in 2001. Antibiotic resistance, particularly beta-lactam resistance, is probably an important selective force considering the high mecA gene carriage of CoNS blood isolates (70 to 92%). We conclude that neonatal CoNS sepsis is increasingly caused by a limited number of predominant molecular CoNS types and that antibiotic resistance is probably a major selective force
    corecore