167 research outputs found
Catadioptric panoramic stereovision for humanoid robots
This paper proposes a novel design of a reconfigurable humanoid robot head, based on biological likeness of human being so that the humanoid robot could agreeably interact with people in various everyday tasks. The proposed humanoid head has a modular and adaptive structural design and is equipped with three main components: frame, neck motion system and omnidirectional stereovision system modules. The omnidirectional stereovision system module being the last module, a motivating contribution with regard to other computer vision systems implemented in former humanoids, it opens new research possibilities for achieving human-like behaviour. A proposal for a real-time catadioptric stereovision system is presented, including stereo geometry for rectifying the system configuration and depth estimation. The methodology for an initial approach for visual servoing tasks is divided into two phases, first related to the robust detection of moving objects, their depth estimation and position calculation, and second the development of attention-based control strategies. Perception capabilities provided allow the extraction of 3D information from a wide range of visions from uncontrolled dynamic environments, and work results are illustrated through a number of experiments
First bounds on the very high energy gamma-ray emission from Arp 220
Using the Major Atmospheric Gamma Imaging Cherenkov Telescope (MAGIC), we
have observed the nearest ultra-luminous infrared galaxy Arp 220 for about 15
hours. No significant signal was detected within the dedicated amount of
observation time. The first upper limits to the very high energy -ray
flux of Arp 220 are herein reported and compared with theoretical expectations.Comment: Accepted for publication in Ap
MAGIC observations of very high energy gamma-rays from HESS J1813-178
Recently, the HESS collaboration has reported the detection of gamma-ray
emission above a few hundred GeV from eight new sources located close to the
Galactic Plane. The source HESS J1813-178 has sparked particular interest, as
subsequent radio observations imply an association with SNR G12.82-0.02.
Triggered by the detection in VHE gamma-rays, a positionally coincident source
has also been found in INTEGRAL and ASCA data. In this Letter we present MAGIC
observations of HESS J1813-178, resulting in the detection of a differential
gamma-ray flux consistent with a hard-slope power law, described as dN/(dA dt
dE) = (3.3+/-0.5)*10^{-12} (E/TeV)^{-2.1+/-0.2} cm^(-2)s^(-1)TeV^(-1). We
briefly discuss the observational technique used, the procedure implemented for
the data analysis, and put this detection in the perspective of multifrequency
observations.Comment: Accepted by ApJ Letter
Discovery of Very High Energy -Rays from Markarian~180 Triggered by an Optical Outburst
The high-frequency-peaked BL Lacertae object Markarian~180 (Mrk~180) was
observed to have an optical outburst in 2006 March, triggering a Target of
Opportunity observation with the MAGIC telescope. The source was observed for
12.4 hr and very high energy -ray emission was detected with a
significance of 5.5 . An integral flux above 200 GeV of
was measured, corresponding to
11% of the Crab Nebula flux. A rather soft spectrum with a photon index of
has been determined. No significant flux variation was found.Comment: Accepted by ApJ Letters, minor revision
MAGIC upper limits on the very high energy emission from GRBs
The fast repositioning system of the MAGIC Telescope has allowed during its
first data cycle, between 2005 and the beginning of year 2006, observing nine
different GRBs as possible sources of very high energy gammas. These
observations were triggered by alerts from Swift, HETE-II, and Integral; they
started as fast as possible after the alerts and lasted for several minutes,
with an energy threshold varying between 80 and 200 GeV, depending upon the
zenith angle of the burst. No evidence for gamma signals was found, and upper
limits for the flux were derived for all events, using the standard analysis
chain of MAGIC. For the bursts with measured redshift, the upper limits are
compatible with a power law extrapolation, when the intrinsic fluxes are
evaluated taking into account the attenuation due to the scattering in the
Metagalactic Radiation Field (MRF).Comment: 25 pages, 9 figures, final version accepted by ApJ. Changet title to
"MAGIC upped limits on the VERY high energy emission from GRBs", re-organized
chapter with description of observation, removed non necessaries figures,
added plot of effective area depending on zenith angle, added an appendix
explaining the upper limit calculation, added some reference
Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope
We report on very high energy gamma-observations with the MAGIC Telescope of
the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain
the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed
gamma-ray emission to be exponentially cut off. The upper limit on the flux of
pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and
the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11
photons cm^-2 sec^-1. We discuss our results in the framework of recent model
predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio
Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC
The paper describes an application of the tree classification method Random
Forest (RF), as used in the analysis of data from the ground-based gamma
telescope MAGIC. In such telescopes, cosmic gamma-rays are observed and have to
be discriminated against a dominating background of hadronic cosmic-ray
particles. We describe the application of RF for this gamma/hadron separation.
The RF method often shows superior performance in comparison with traditional
semi-empirical techniques. Critical issues of the method and its implementation
are discussed. An application of the RF method for estimation of a continuous
parameter from related variables, rather than discrete classes, is also
discussed.Comment: 16 pages, 8 figure
Unfolding of differential energy spectra in the MAGIC experiment
The paper describes the different methods, used in the MAGIC experiment, to
unfold experimental energy distributions of cosmic ray particles (gamma-rays).
Questions and problems related to the unfolding are discussed. Various
procedures are proposed which can help to make the unfolding robust and
reliable. The different methods and procedures are implemented in the MAGIC
software and are used in most of the analyses.Comment: Submitted to NIM
Discovery of VHE Gamma Radiation from IC443 with the MAGIC Telescope
We report the detection of a new source of very high energy (VHE, E_gamma >=
100GeV) gamma-ray emission located close to the Galactic Plane, MAGIC
J0616+225, which is spatially coincident with SNR IC443. The observations were
carried out with the MAGIC telescope in the periods December 2005 - January
2006 and December 2006 - January 2007. Here we present results from this
source, leading to a VHE gamma-ray signal with a statistical significance of
5.7 sigma in the 2006/7 data and a measured differential gamma-ray flux
consistent with a power law, described as dN_gamma/(dA dt dE) = (1.0 +/-
0.2)*10^(-11)(E/0.4 TeV)^(-3.1 +/- 0.3) cm^(-2)s^(-1)TeV^(-1). We briefly
discuss the observational technique used and the procedure implemented for the
data analysis. The results are put in the perspective of the multiwavelength
emission and the molecular environment found in the region of IC443.Comment: Accepted by ApJ Letter
Discovery of Very High Energy gamma-rays from 1ES 1011+496 at z=0.212
We report on the discovery of Very High Energy (VHE) gamma-ray emission from
the BL Lacertae object 1ES1011+496. The observation was triggered by an optical
outburst in March 2007 and the source was observed with the MAGIC telescope
from March to May 2007. Observing for 18.7 hr we find an excess of 6.2 sigma
with an integrated flux above 200 GeV of (1.58 photons
cm s. The VHE gamma-ray flux is >40% higher than in March-April
2006 (reported elsewhere), indicating that the VHE emission state may be
related to the optical emission state. We have also determined the redshift of
1ES1011+496 based on an optical spectrum that reveals the absorption lines of
the host galaxy. The redshift of z=0.212 makes 1ES1011+496 the most distant
source observed to emit VHE gamma-rays up to date.Comment: 4 pages, 6 figures, minor changes to fit the ApJ versio
- …