112 research outputs found
Sensitizing thermochemotherapy with a PARP1-inhibitor
Cis-diamminedichloroplatinum(II) (cisplatin, cDDP) is an effective chemotherapeutic agent that induces DNA double strand breaks (DSBs), primarily in replicating cells. Generally, such DSBs can be repaired by the classical or backup non-homologous end joining (c-NHEJ/b-NHEJ) or homologous recombination (HR). Therefore, inhibiting these pathways in cancer cells should enhance the efficiency of cDDP treatments. Indeed, inhibition of HR by hyperthermia (HT) sensitizes cancer cells to cDDP and in the Netherlands this combination is a standard treatment option for recurrent cervical cancer after previous radiotherapy. Additionally, cDDP has been demonstrated to disrupt c-NHEJ, which likely further increases the treatment efficacy. However, if one of these pathways is blocked, DSB repair functions can be sustained by the Poly-(ADP-ribose)-polymerase1 (PARP1)-dependent b-NHEJ. Therefore, disabling b-NHEJ should, in principle, further inhibit the repair of cDDP-induced DNA lesions and enhance the toxicity of thermochemotherapy. To explore this hypothesis, we treated a panel of cancer cell lines with HT, cDDP and a PARP1-i and measured various end-point relevant in cancer treatment. Our results demonstrate that PARP1-i does not considerably increase the efficacy of HT combined with standard, commonly used cDDP concentrations. However, in the presence of a PARP1-i, ten-fold lower concentration of cDDP can be used to induce similar cytotoxic effects. PARP1 inhibition may thus permit a substantial lowering of cDDP concentrations without diminishing treatment efficacy, potentially reducing systemic side effects
Enhancing synthetic lethality of PARP-inhibitor and cisplatin in BRCA-proficient tumour cells with hyperthermia
Background: Poly-(ADP-ribose)-polymerase1 (PARP1) is involved in repair of DNA single strand breaks. PARP1-inhibitors (PARP1-i) cause an accumulation of DNA double strand breaks, which are generally repaired by homologous recombination (HR). Therefore, cancer cells harboring HR deficiencies are exceptionally sensitive to PARP1-i. For patients with HR-proficient tumors, HR can be temporarily inhibited by hyperthermia, thereby inducing synthetic lethal conditions in every tumor type. Since cisplatin is successfully used combined with hyperthermia (thermochemotherapy), we investigated the effectiveness of combining PARP1-i with thermochemotherapy. Results: The in vitro data demonstrate a decreased in cell survival after addition of PARP1-i to thermochemotherapy, which can be explained by increased DNA damage induction and less DSB repair. These in vitro findings are in line with in vivo model, in which a decreased tumor growth is observed upon addition of PARP1-i. Materials and Methods: Survival of three HR-proficient cell lines after cisplatin, hyperthermia and/or PARP1-i was studied. Cell cycle analyses, quantification of γ-H2AX foci and apoptotic assays were performed to understand these survival data. The effects of treatments were further evaluated by monitoring tumor responses in an in vivo rat model. Conclusions: Our results in HR-proficient cell lines suggest that PARP1-i combined with thermochemotherapy can be a promising clinical approach for all tumors independent of HR status
Investigating the delivery of PD-L1-targeted immunoliposomes in a dynamic cervical cancer-on-a-chip model
The recent approval of pembrolizumab in recurrent or metastatic cervical cancer warrants further investigations into the usefulness of immunotherapies for more durable and less radical interventions. In this study, the targeting potential of anti-PD-L1-functionalized immunoliposomes was tested in a 3D in vitro cervical cancer-on-a-chip model. Immunolipsomes were synthesized and decorated externally with monovalent anti-PD-L1 Fab’ fragments of commercially available atezolizumab. Cervical cancer cell lines with varying levels of PD-L1 expression were cultured as spheroids embedded in a collagen I matrix, and treated under flow of culture media. Flow cytometry and live-cell confocal imaging were used to measure the interactions and uptake of untargeted liposomes and immunoliposomes in this panel of cell lines. The immunoliposomes retained specific functionality regardless of protein corona formation in high serum environments. As such, spheroids expressing high levels of PD-L1 preferentially internalized immunoliposomes in a 3D environment with extracellular matrix present, while low PD-L1-expressing cell lines showed no preference for either formulation. Importantly, treatments performed in monolayer cultures (on plastic) showed no differences between immuno- and untargeted liposome uptake, including the way in which the endocytosed liposomes are trafficked subcellularly. This study demonstrates the importance of both active and passive accumulation strategies to achieve nanoparticle targeting. Immunoliposomes remain a promising platform for the development of targeted nanotherapies against cervical cancers. However, initial functional tests did not translate directly to biological performance and this should be kept in mind for future formulations. Furthermore, the in vitro model developed appeared useful for visualizing liposome uptake in a 3D, live tissue environment and represents a cost-effective and reproducible model for future studies.</p
The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer
The potential of step-up heating protocols to improve the efficacy of oxaliplatin-based HIPEC:in silico study on a rat model
Hyperthermic intraperitoneal chemotherapy (HIPEC) following cytoreductive surgery (CRS) represents a primary curative option for peritoneal metastasis of colorectal cancer (PMCRC). A typical protocol involves administering oxaliplatin through a 30-minute HIPEC session at 42 °C, but this short duration is criticized, as it may be associated with sub-optimal effectiveness. Nevertheless, prolonged duration yields a potential risk of toxicity. This study proposes and numerically investigates step-up heating to permit extension of the duration of oxaliplatin-based HIPEC. Different step-up heating protocols, comprising sequential low- to high-temperature phases ranging from 39 to 43 °C, were simulated on a rat abdominal model mimicking open HIPEC. The risk of thermal and chemotherapeutic toxicity was evaluated. The pharmacokinetic profile of step-up heating, in terms of effective oxaliplatin accumulation and penetration in the tumor, was compared to that of short-duration HIPEC at 42 °C, which served as the control case. The extended duration of HIPEC through step-up heating can enhance the availability of oxaliplatin and alleviate the challenge of low penetration in tumors situated in areas with higher oxaliplatin heterogeneity and slower coverage, particularly advantageous for less vascularized tumors (up to 40% increase in penetration depth). The administered dose must be adjusted according to the maximum tolerated dose, given the increased oxaliplatin concentration in organs and the systemic compartment. Thermal dose analysis showed that temperatures beyond 42 °C should be avoided in both phases of step-up heating. The step-up heating approach can provide an opportunity to safely extend the duration of oxaliplatin-based HIPEC, thereby improving its clinical efficacy.</p
Applications of biomimetic nanoparticles in breast cancer as a blueprint for improved next-generation cervical cancer therapy
Nanomedicines are innovative and promising, but lack a convincing clinical presence. Thus, biomimetic nanoparticles (BMNPs) have been designed with functionalizations which structurally and/or functionally mimic the biological setting, endowing thereupon biological structure and functionality. These may be coated with biologically derived materials, but may also include artificial antigen-presenting cells and synthetic architectures. When applied in cancer theranostics, BMNPs show significant improvements over traditional drugs and similar non-biomimetic NPs, especially in terms of circulation time, tissue penetration, delivery, and lowered toxicity. These particles have achieved unprecedented outcomes through top-down synthesis methods (cell material to NP), which bypass complex bottom-up synthetic techniques attempting to mimic such complex and diverse biological components. Breast cancer has received much attention in this area, and as such, is studied in this paper as a template for how BMNPs could be applied in cervical cancer – an area with few BMNP applications and a dire need for efficacious and fertility-preserving therapies. This cancer remains an enormous burden globally, especially in developing countries. Being a virus-induced disease, biomimetic applications may be particularly promising, aligning with the emergence of biomimetic nanovaccines in recent years. Feasibility challenges remain within BMNPs: Extracting biological material for re-administration to patients could cause ethical debate, and the costs involved in preparing scaled up quantities of biomimetic NPs would be large. However, with a clearer understanding and tighter characterization of preparation methods and biological responses, BMNPs may add great value to the nanomedicine community.</p
Increased human papillomavirus viral load is correlated to higher severity of cervical disease and poorer clinical outcome:A systematic review
Cervical cancer is the fourth most common cancer in women worldwide and is caused by persistent infection with high-risk types of human papillomavirus (HPV). HPV viral load, the amount of HPV DNA in a sample, has been suggested to correlate with cervical disease severity, and with clinical outcome of cervical cancer. In this systematic review, we searched three databases (EMBASE, PubMed, Web of Science) to examine the current evidence on the association between HPV viral load in cervical samples and disease severity, as well as clinical outcome. After exclusion of articles not on HPV, cervical cancer, or containing clinical outcomes, 85 original studies involving 173 746 women were included. The vast majority (73/85 = 85.9%) reported that a higher viral load was correlated with higher disease severity or worse clinical outcome. Several studies reported either no correlation (3/85 = 3.5%), or the opposite correlation (9/85 = 10.6%); possible reasons being different categorization of HPV viral load levels, or the use of specific sampling methods. Despite variations in study design and populations, the above findings suggest that HPV viral load is correlated to clinical outcome, and may become an important biomarker for treatment selection and response monitoring for cervical cancer.</p
Increased human papillomavirus viral load is correlated to higher severity of cervical disease and poorer clinical outcome:A systematic review
Cervical cancer is the fourth most common cancer in women worldwide and is caused by persistent infection with high-risk types of human papillomavirus (HPV). HPV viral load, the amount of HPV DNA in a sample, has been suggested to correlate with cervical disease severity, and with clinical outcome of cervical cancer. In this systematic review, we searched three databases (EMBASE, PubMed, Web of Science) to examine the current evidence on the association between HPV viral load in cervical samples and disease severity, as well as clinical outcome. After exclusion of articles not on HPV, cervical cancer, or containing clinical outcomes, 85 original studies involving 173 746 women were included. The vast majority (73/85 = 85.9%) reported that a higher viral load was correlated with higher disease severity or worse clinical outcome. Several studies reported either no correlation (3/85 = 3.5%), or the opposite correlation (9/85 = 10.6%); possible reasons being different categorization of HPV viral load levels, or the use of specific sampling methods. Despite variations in study design and populations, the above findings suggest that HPV viral load is correlated to clinical outcome, and may become an important biomarker for treatment selection and response monitoring for cervical cancer.</p
Radiosensitization with Hyperthermia and Chemotherapeutic Agents: Effects on Linear-Quadratic Parameters of Radiation Cell Survival Curves
Elevated temperatures and longer durations improve the efficacy of oxaliplatin- and mitomycin C-based hyperthermic intraperitoneal chemotherapy in a confirmed rat model for peritoneal metastasis of colorectal cancer origin
Introduction: In patients with limited peritoneal metastasis (PM) originating from colorectal cancer, cytoreductive surgery (CRS) followed by hyperthermic intraperitoneal chemotherapy (HIPEC) is a potentially curative treatment option. This combined treatment modality using HIPEC with mitomycin C (MMC) for 90 minutes proved to be superior to systemic chemotherapy alone, but no benefit of adding HIPEC to CRS alone was shown using oxaliplatin-based HIPEC during 30 minutes. We investigated the impact of treatment temperature and duration as relevant HIPEC parameters for these two chemotherapeutic agents in representative preclinical models. The temperature- and duration- dependent efficacy for both oxaliplatin and MMC was evaluated in an in vitro setting and in a representative animal model. Methods: In 130 WAG/Rij rats, PM were established through i.p. injections of rat CC-531 colon carcinoma cells with a signature similar to the dominant treatment-resistant CMS4 type human colorectal PM. Tumor growth was monitored twice per week using ultrasound, and HIPEC was applied when most tumors were 4-6 mm. A semi-open four-inflow HIPEC setup was used to circulate oxaliplatin or MMC through the peritoneum for 30, 60 or 90 minutes with inflow temperatures of 38°C or 42°C to achieve temperatures in the peritoneum of 37°C or 41°C. Tumors, healthy tissue and blood were collected directly or 48 hours after treatment to assess the platinum uptake, level of apoptosis and proliferation and to determine the healthy tissue toxicity. Results: In vitro results show a temperature- and duration- dependent efficacy for both oxaliplatin and MMC in both CC-531 cells and organoids. Temperature distribution throughout the peritoneum of the rats was stable with normothermic and hyperthermic average temperatures in the peritoneum ranging from 36.95-37.63°C and 40.51-41.37°C, respectively. Treatments resulted in minimal body weight decrease (<10%) and only 7/130 rats did not reach the endpoint of 48 hours after treatment. Conclusions: Both elevated temperatures and longer treatment duration resulted in a higher platinum uptake, significantly increased apoptosis and lower proliferation in PM tumor lesions, without enhanced normal tissue toxicity. Our results demonstrated that oxaliplatin- and MMC-based HIPEC procedures are both temperature- and duration-dependent in an in vivo tumor model.</p
- …
