3 research outputs found

    Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics Experiments: Review, Tutorial, and Perspectives

    No full text
    Gene expression profiling technologies have been used in various applications such as cancer biology. The development of gene expression profiling has expanded the scope of target discovery in transcriptomic studies, and each technology produces data with distinct characteristics. In order to guarantee biologically meaningful findings using transcriptomic experiments, it is important to consider various experimental factors in a systematic way through statistical power analysis. In this paper, we review and discuss the power analysis for three types of gene expression profiling technologies from a practical standpoint, including bulk RNA-seq, single-cell RNA-seq, and high-throughput spatial transcriptomics. Specifically, we describe the existing power analysis tools for each research objective for each of the bulk RNA-seq and scRNA-seq experiments, along with recommendations. On the other hand, since there are no power analysis tools for high-throughput spatial transcriptomics at this point, we instead investigate the factors that can influence power analysis

    Statistical Power Analysis for Designing Bulk, Single-Cell, and Spatial Transcriptomics Experiments: Review, Tutorial, and Perspectives

    No full text
    Gene expression profiling technologies have been used in various applications such as cancer biology. The development of gene expression profiling has expanded the scope of target discovery in transcriptomic studies, and each technology produces data with distinct characteristics. In order to guarantee biologically meaningful findings using transcriptomic experiments, it is important to consider various experimental factors in a systematic way through statistical power analysis. In this paper, we review and discuss the power analysis for three types of gene expression profiling technologies from a practical standpoint, including bulk RNA-seq, single-cell RNA-seq, and high-throughput spatial transcriptomics. Specifically, we describe the existing power analysis tools for each research objective for each of the bulk RNA-seq and scRNA-seq experiments, along with recommendations. On the other hand, since there are no power analysis tools for high-throughput spatial transcriptomics at this point, we instead investigate the factors that can influence power analysis

    A multi-symptomatic model of heroin use disorder in rats reveals distinct behavioral profiles and neuronal correlates of heroin vulnerability versus resiliency.

    No full text
    Objective The behavioral and diagnostic heterogeneity within human opioid use disorder (OUD) diagnosis is not readily captured in current animal models, limiting translational relevance of the mechanistic research that is conducted in experimental animals. We hypothesize that a non-linear clustering of OUD-like behavioral traits will capture population heterogeneity and yield subpopulations of OUD vulnerable rats with distinct behavioral and neurocircuit profiles.Methods Over 900 male and female heterogeneous stock rats, a line capturing genetic and behavioral heterogeneity present in humans, were assessed for several measures of heroin use and rewarded and non-rewarded seeking behaviors. Using a non-linear stochastic block model clustering analysis, rats were assigned to OUD vulnerable, intermediate and resilient clusters. Additional behavioral tests and circuit analyses using c-fos activation were conducted on the vulnerable and resilient subpopulations.Results OUD vulnerable rats exhibited greater heroin taking and seeking behaviors relative to those in the intermediate and resilient clusters. Akin to human OUD diagnosis, further vulnerable rat sub- clustering revealed subpopulations with different combinations of behavioral traits, including sex differences. Lastly, heroin cue-induced neuronal patterns of circuit activation differed between resilient and vulnerable phenotypes. Behavioral sex differences were recapitulated in patterns of circuitry activation, including males preferentially engaging extended amygdala stress circuitry, and females cortico-striatal drug cue-seeking circuitry.Conclusion Using a non-linear clustering approach in rats, we captured behavioral diagnostic heterogeneity reflective of human OUD diagnosis. OUD vulnerability and resiliency were associated with distinct neuronal activation patterns, posing this approach as a translational tool in assessing neurobiological mechanisms underpinning OUD.Competing Interest StatementThe authors have declared no competing interest
    corecore