844 research outputs found

    Approximating the minimum directed tree cover

    Full text link
    Given a directed graph GG with non negative cost on the arcs, a directed tree cover of GG is a rooted directed tree such that either head or tail (or both of them) of every arc in GG is touched by TT. The minimum directed tree cover problem (DTCP) is to find a directed tree cover of minimum cost. The problem is known to be NPNP-hard. In this paper, we show that the weighted Set Cover Problem (SCP) is a special case of DTCP. Hence, one can expect at best to approximate DTCP with the same ratio as for SCP. We show that this expectation can be satisfied in some way by designing a purely combinatorial approximation algorithm for the DTCP and proving that the approximation ratio of the algorithm is max{2,ln(D+)}\max\{2, \ln(D^+)\} with D+D^+ is the maximum outgoing degree of the nodes in GG.Comment: 13 page

    A solvable model of the genesis of amino-acid sequences via coupled dynamics of folding and slow genetic variation

    Full text link
    We study the coupled dynamics of primary and secondary structure formation (i.e. slow genetic sequence selection and fast folding) in the context of a solvable microscopic model that includes both short-range steric forces and and long-range polarity-driven forces. Our solution is based on the diagonalization of replicated transfer matrices, and leads in the thermodynamic limit to explicit predictions regarding phase transitions and phase diagrams at genetic equilibrium. The predicted phenomenology allows for natural physical interpretations, and finds satisfactory support in numerical simulations.Comment: 51 pages, 13 figures, submitted to J. Phys.

    Optimizing information flow in small genetic networks. I

    Full text link
    In order to survive, reproduce and (in multicellular organisms) differentiate, cells must control the concentrations of the myriad different proteins that are encoded in the genome. The precision of this control is limited by the inevitable randomness of individual molecular events. Here we explore how cells can maximize their control power in the presence of these physical limits; formally, we solve the theoretical problem of maximizing the information transferred from inputs to outputs when the number of available molecules is held fixed. We start with the simplest version of the problem, in which a single transcription factor protein controls the readout of one or more genes by binding to DNA. We further simplify by assuming that this regulatory network operates in steady state, that the noise is small relative to the available dynamic range, and that the target genes do not interact. Even in this simple limit, we find a surprisingly rich set of optimal solutions. Importantly, for each locally optimal regulatory network, all parameters are determined once the physical constraints on the number of available molecules are specified. Although we are solving an over--simplified version of the problem facing real cells, we see parallels between the structure of these optimal solutions and the behavior of actual genetic regulatory networks. Subsequent papers will discuss more complete versions of the problem

    Algorithms for Stable Matching and Clustering in a Grid

    Full text link
    We study a discrete version of a geometric stable marriage problem originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which points in the plane are stably matched to cluster centers, as prioritized by their distances, so that each cluster center is apportioned a set of points of equal area. We show that, for a discretization of the problem to an n×nn\times n grid of pixels with kk centers, the problem can be solved in time O(n2log5n)O(n^2 \log^5 n), and we experiment with two slower but more practical algorithms and a hybrid method that switches from one of these algorithms to the other to gain greater efficiency than either algorithm alone. We also show how to combine geometric stable matchings with a kk-means clustering algorithm, so as to provide a geometric political-districting algorithm that views distance in economic terms, and we experiment with weighted versions of stable kk-means in order to improve the connectivity of the resulting clusters.Comment: 23 pages, 12 figures. To appear (without the appendices) at the 18th International Workshop on Combinatorial Image Analysis, June 19-21, 2017, Plovdiv, Bulgari

    Scheduling Algorithms for Procrastinators

    Full text link
    This paper presents scheduling algorithms for procrastinators, where the speed that a procrastinator executes a job increases as the due date approaches. We give optimal off-line scheduling policies for linearly increasing speed functions. We then explain the computational/numerical issues involved in implementing this policy. We next explore the online setting, showing that there exist adversaries that force any online scheduling policy to miss due dates. This impossibility result motivates the problem of minimizing the maximum interval stretch of any job; the interval stretch of a job is the job's flow time divided by the job's due date minus release time. We show that several common scheduling strategies, including the "hit-the-highest-nail" strategy beloved by procrastinators, have arbitrarily large maximum interval stretch. Then we give the "thrashing" scheduling policy and show that it is a \Theta(1) approximation algorithm for the maximum interval stretch.Comment: 12 pages, 3 figure

    On-the-fly Uniformization of Time-Inhomogeneous Infinite Markov Population Models

    Full text link
    This paper presents an on-the-fly uniformization technique for the analysis of time-inhomogeneous Markov population models. This technique is applicable to models with infinite state spaces and unbounded rates, which are, for instance, encountered in the realm of biochemical reaction networks. To deal with the infinite state space, we dynamically maintain a finite subset of the states where most of the probability mass is located. This approach yields an underapproximation of the original, infinite system. We present experimental results to show the applicability of our technique

    Genetic noise control via protein oligomerization

    Get PDF
    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Here we have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise
    corecore