844 research outputs found
Approximating the minimum directed tree cover
Given a directed graph with non negative cost on the arcs, a directed
tree cover of is a rooted directed tree such that either head or tail (or
both of them) of every arc in is touched by . The minimum directed tree
cover problem (DTCP) is to find a directed tree cover of minimum cost. The
problem is known to be -hard. In this paper, we show that the weighted Set
Cover Problem (SCP) is a special case of DTCP. Hence, one can expect at best to
approximate DTCP with the same ratio as for SCP. We show that this expectation
can be satisfied in some way by designing a purely combinatorial approximation
algorithm for the DTCP and proving that the approximation ratio of the
algorithm is with is the maximum outgoing degree of
the nodes in .Comment: 13 page
A solvable model of the genesis of amino-acid sequences via coupled dynamics of folding and slow genetic variation
We study the coupled dynamics of primary and secondary structure formation
(i.e. slow genetic sequence selection and fast folding) in the context of a
solvable microscopic model that includes both short-range steric forces and and
long-range polarity-driven forces. Our solution is based on the diagonalization
of replicated transfer matrices, and leads in the thermodynamic limit to
explicit predictions regarding phase transitions and phase diagrams at genetic
equilibrium. The predicted phenomenology allows for natural physical
interpretations, and finds satisfactory support in numerical simulations.Comment: 51 pages, 13 figures, submitted to J. Phys.
Optimizing information flow in small genetic networks. I
In order to survive, reproduce and (in multicellular organisms)
differentiate, cells must control the concentrations of the myriad different
proteins that are encoded in the genome. The precision of this control is
limited by the inevitable randomness of individual molecular events. Here we
explore how cells can maximize their control power in the presence of these
physical limits; formally, we solve the theoretical problem of maximizing the
information transferred from inputs to outputs when the number of available
molecules is held fixed. We start with the simplest version of the problem, in
which a single transcription factor protein controls the readout of one or more
genes by binding to DNA. We further simplify by assuming that this regulatory
network operates in steady state, that the noise is small relative to the
available dynamic range, and that the target genes do not interact. Even in
this simple limit, we find a surprisingly rich set of optimal solutions.
Importantly, for each locally optimal regulatory network, all parameters are
determined once the physical constraints on the number of available molecules
are specified. Although we are solving an over--simplified version of the
problem facing real cells, we see parallels between the structure of these
optimal solutions and the behavior of actual genetic regulatory networks.
Subsequent papers will discuss more complete versions of the problem
Algorithms for Stable Matching and Clustering in a Grid
We study a discrete version of a geometric stable marriage problem originally
proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which
points in the plane are stably matched to cluster centers, as prioritized by
their distances, so that each cluster center is apportioned a set of points of
equal area. We show that, for a discretization of the problem to an
grid of pixels with centers, the problem can be solved in time , and we experiment with two slower but more practical algorithms and
a hybrid method that switches from one of these algorithms to the other to gain
greater efficiency than either algorithm alone. We also show how to combine
geometric stable matchings with a -means clustering algorithm, so as to
provide a geometric political-districting algorithm that views distance in
economic terms, and we experiment with weighted versions of stable -means in
order to improve the connectivity of the resulting clusters.Comment: 23 pages, 12 figures. To appear (without the appendices) at the 18th
International Workshop on Combinatorial Image Analysis, June 19-21, 2017,
Plovdiv, Bulgari
Scheduling Algorithms for Procrastinators
This paper presents scheduling algorithms for procrastinators, where the
speed that a procrastinator executes a job increases as the due date
approaches. We give optimal off-line scheduling policies for linearly
increasing speed functions. We then explain the computational/numerical issues
involved in implementing this policy. We next explore the online setting,
showing that there exist adversaries that force any online scheduling policy to
miss due dates. This impossibility result motivates the problem of minimizing
the maximum interval stretch of any job; the interval stretch of a job is the
job's flow time divided by the job's due date minus release time. We show that
several common scheduling strategies, including the "hit-the-highest-nail"
strategy beloved by procrastinators, have arbitrarily large maximum interval
stretch. Then we give the "thrashing" scheduling policy and show that it is a
\Theta(1) approximation algorithm for the maximum interval stretch.Comment: 12 pages, 3 figure
On-the-fly Uniformization of Time-Inhomogeneous Infinite Markov Population Models
This paper presents an on-the-fly uniformization technique for the analysis
of time-inhomogeneous Markov population models. This technique is applicable to
models with infinite state spaces and unbounded rates, which are, for instance,
encountered in the realm of biochemical reaction networks. To deal with the
infinite state space, we dynamically maintain a finite subset of the states
where most of the probability mass is located. This approach yields an
underapproximation of the original, infinite system. We present experimental
results to show the applicability of our technique
Recommended from our members
Mixed waste contamination selects for a mobile genetic element population enriched in multiple heavy metal resistance genes
Mobile genetic elements (MGEs) like plasmids, viruses, and transposable elements can provide fitness benefits to their hosts for survival in the presence of environmental stressors. Heavy metal resistance genes (HMRGs) are frequently observed on MGEs, suggesting that MGEs may be an important driver of adaptive evolution in environments contaminated with heavy metals. Here, we report the meta-mobilome of the heavy metal-contaminated regions of the Oak Ridge Reservation subsurface. This meta-mobilome was compared with one derived from samples collected from unimpacted regions of the Oak Ridge Reservation subsurface. We assembled 1615 unique circularized DNA elements that we propose to be MGEs. The circular elements from the highly contaminated subsurface were enriched in HMRG clusters relative to those from the nearby unimpacted regions. Additionally, we found that these HMRGs were associated with Gamma and Betaproteobacteria hosts in the contaminated subsurface and potentially facilitate the persistence and dominance of these taxa in this region. Finally, the HMRGs were associated with conjugative elements, suggesting their potential for future lateral transfer. We demonstrate how our understanding of MGE ecology, evolution, and function can be enhanced through the genomic context provided by completed MGE assemblies
Genetic noise control via protein oligomerization
Gene expression in a cell entails random reaction events occurring over
disparate time scales. Thus, molecular noise that often results in phenotypic
and population-dynamic consequences sets a fundamental limit to biochemical
signaling. While there have been numerous studies correlating the architecture
of cellular reaction networks with noise tolerance, only a limited effort has
been made to understand the dynamic role of protein-protein interactions. Here
we have developed a fully stochastic model for the positive feedback control of
a single gene, as well as a pair of genes (toggle switch), integrating
quantitative results from previous in vivo and in vitro studies. We find that
the overall noise-level is reduced and the frequency content of the noise is
dramatically shifted to the physiologically irrelevant high-frequency regime in
the presence of protein dimerization. This is independent of the choice of
monomer or dimer as transcription factor and persists throughout the multiple
model topologies considered. For the toggle switch, we additionally find that
the presence of a protein dimer, either homodimer or heterodimer, may
significantly reduce its random switching rate. Hence, the dimer promotes the
robust function of bistable switches by preventing the uninduced (induced)
state from randomly being induced (uninduced). The specific binding between
regulatory proteins provides a buffer that may prevent the propagation of
fluctuations in genetic activity. The capacity of the buffer is a non-monotonic
function of association-dissociation rates. Since the protein oligomerization
per se does not require extra protein components to be expressed, it provides a
basis for the rapid control of intrinsic or extrinsic noise
Recommended from our members
Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer.
The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments
- …