388 research outputs found

    Quantum-corrected ultraextremal horizons and validity of WKB in massless limit

    Get PDF
    We consider quantum backreaction of the quantized scalar field with an arbitrary mass and curvature coupling on ultraextremal horizons. The problem is distinguished in that (in contrast to non-extremal or extremal black holes) the WKB approximation remains valid near r+r_{+} (which is the radius of the horizon) even in the massless limit. We examine the behavior of the stress-energy tensor of the quantized field near r+r_{+} and show that quantum-corrected objects under discussion do exist. In the limit of the large mass our results agree with previous ones known in literature.Comment: revtex4, 9 page

    Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: real-time synchrotron simulations

    Get PDF
    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction

    Collective Phase Chaos in the Dynamics of Interacting Oscillator Ensembles

    Full text link
    We study chaotic behavior of order parameters in two coupled ensembles of self-sustained oscillators. Coupling within each of these ensembles is switched on and off alternately, while the mutual interaction between these two subsystems is arranged through quadratic nonlinear coupling. We show numerically that in the course of alternating Kuramoto transitions to synchrony and back to asynchrony, the exchange of excitations between two subpopulations proceeds in such a way that their collective phases are governed by an expanding circle map similar to the Bernoulli map. We perform the Lyapunov analysis of the dynamics and discuss finite-size effects.Comment: 19 page

    Scaling Properties of Weak Chaos in Nonlinear Disordered Lattices

    Full text link
    The Discrete Nonlinear Schroedinger Equation with a random potential in one dimension is studied as a dynamical system. It is characterized by the length, the strength of the random potential and by the field density that determines the effect of nonlinearity. The probability of the system to be regular is established numerically and found to be a scaling function. This property is used to calculate the asymptotic properties of the system in regimes beyond our computational power.Comment: 4 pages, 5 figure

    Hyperbolic Chaos of Turing Patterns

    Full text link
    We consider time evolution of Turing patterns in an extended system governed by an equation of the Swift-Hohenberg type, where due to an external periodic parameter modulation long-wave and short-wave patterns with length scales related as 1:3 emerge in succession. We show theoretically and demonstrate numerically that the spatial phases of the patterns, being observed stroboscopically, are governed by an expanding circle map, so that the corresponding chaos of Turing patterns is hyperbolic, associated with a strange attractor of the Smale-Williams solenoid type. This chaos is shown to be robust with respect to variations of parameters and boundary conditions.Comment: 4 pages, 4 figure
    • …
    corecore