15 research outputs found

    How Much Does Weather Matter? Effects of Rain and Wind on PM Accumulation by Four Species of Australian Native Trees

    Get PDF
    As interest in improving urban air quality grows, phytoremediation-amelioration through plants-is an increasingly popular method of targeting particulate matter (PM), one of the most harmful pollutants. Decades of research has proven that plants effectively capture PM from air; however, more information is needed on the dynamics of PM accumulation. Our study evaluated the effects of meteorological conditions on the dynamics of PM deposition, wash off and resuspension using four Australian tree species growing under natural conditions near a busy highway. Accumulation of PM on foliage was analyzed over the short term (daily changes) and over a longer time period (weekly changes). The results obtained were correlated with ambient concentrations of PM2.5 and PM10, rain intensity and wind strength. The highest accumulation of PM was recorded for Eucalyptus ovata (100.2 ”g cm−2), which also had the thickest wax layer while the lowest was for Brachychiton acerifolius (77.9 ”g cm−2). PM accumulation was highly changeable, with up to 35% different PM loads on the foliage from one day to the next. Importantly these dynamics are hidden in weekly measurements. Changes in PM deposition on the leaves was mostly affected by rain and to a lesser extent by wind, but the extent of the effect was species specific. The large PM fraction (10-100 ”m) was the first to be removed from leaves, while the smallest PM fraction (0.2-2.5 ”m) was retained for longer. Precipitation affects also PM retained in waxes, which until now were believed to be not affected by rain. This work demonstrates important interactions between PM load and weather, as well as adding to the small inventory of Australian native tree PM accumulation data

    How Much Does Weather Matter? Effects of Rain and Wind on PM Accumulation by Four Species of Australian Native Trees

    No full text
    As interest in improving urban air quality grows, phytoremediation—amelioration through plants—is an increasingly popular method of targeting particulate matter (PM), one of the most harmful pollutants. Decades of research has proven that plants effectively capture PM from air; however, more information is needed on the dynamics of PM accumulation. Our study evaluated the effects of meteorological conditions on the dynamics of PM deposition, wash off and resuspension using four Australian tree species growing under natural conditions near a busy highway. Accumulation of PM on foliage was analyzed over the short term (daily changes) and over a longer time period (weekly changes). The results obtained were correlated with ambient concentrations of PM2.5 and PM10, rain intensity and wind strength. The highest accumulation of PM was recorded for Eucalyptus ovata (100.2 µg cm−2), which also had the thickest wax layer while the lowest was for Brachychiton acerifolius (77.9 µg cm−2). PM accumulation was highly changeable, with up to 35% different PM loads on the foliage from one day to the next. Importantly these dynamics are hidden in weekly measurements. Changes in PM deposition on the leaves was mostly affected by rain and to a lesser extent by wind, but the extent of the effect was species specific. The large PM fraction (10–100 µm) was the first to be removed from leaves, while the smallest PM fraction (0.2–2.5 µm) was retained for longer. Precipitation affects also PM retained in waxes, which until now were believed to be not affected by rain. This work demonstrates important interactions between PM load and weather, as well as adding to the small inventory of Australian native tree PM accumulation data

    The Role of Trees in Winter Air Purification on Children’s Routes to School

    No full text
    Air pollution is now considered to be the world’s largest environmental health threat, accounting for millions of deaths globally each year. The social group that is particularly exposed to the harmful effects of air pollution is children. Their vulnerability results from higher breathing frequency and being subject to concentration peaks just above the ground. The negative effects of ambient particulate matter also depend on the time of exposure. A daily route to school can constitute an important component of children’s physical activity, but air pollution can pose a threat to their health. Numerous studies have proved that high loads of PM can be effectively reduced by vegetation. Little is known, however, on whether vegetation can also reduce PM during leaf dormancy. In this study we investigated the role of trees in air purification during the leafless period in children’s routes to selected schools located in Warsaw during winter. The results obtained show a weak impact of the tree canopy in winter

    The Role of Trees in Winter Air Purification on Children’s Routes to School

    No full text
    Air pollution is now considered to be the world’s largest environmental health threat, accounting for millions of deaths globally each year. The social group that is particularly exposed to the harmful effects of air pollution is children. Their vulnerability results from higher breathing frequency and being subject to concentration peaks just above the ground. The negative effects of ambient particulate matter also depend on the time of exposure. A daily route to school can constitute an important component of children’s physical activity, but air pollution can pose a threat to their health. Numerous studies have proved that high loads of PM can be effectively reduced by vegetation. Little is known, however, on whether vegetation can also reduce PM during leaf dormancy. In this study we investigated the role of trees in air purification during the leafless period in children’s routes to selected schools located in Warsaw during winter. The results obtained show a weak impact of the tree canopy in winter

    α- and ÎČ-Carotene Stability During Storage of Microspheres Obtained from Spray-Dried Microencapsulation Technology

    No full text
    This study was aimed at comparing the stability of carotenes (α- and ÎČ-carotene) in oil solutions with their stability when spray-dried encapsulation is applied. The carotenes were isolated from carrot. A storage test was subsequently performed. The stability of carotenes in oil solutions was determined with the HPLC method. The color of the samples was also analyzed. The oil solutions of carotenes were microencapsulated with the spray-drying method. A mixture of gum Arabic and maltodextrin was used as a matrix

    Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations

    No full text
    The issue of air pollution from particulate matter (PM) is getting worse as more and more people move into urban areas around the globe. Due to the complexity and diversity of pollution sources, it has long been hard to rely on source control techniques to manage this issue. Due to the fact that urban trees may provide a variety of ecosystem services, there is an urgent need to investigate alternative strategies for dramatically improving air quality. PM has always been a significant concern due to its adverse effects on humans and the entire ecosystem. The severity of this issue has risen in the current global environmental context. Numerous studies on respiratory and other human disorders have revealed a statistical relationship between human exposure to outdoor levels of particles or dust and harmful health effects. These risks are undeniably close to industrial areas where these airborne, inhalable particles are produced. The combined and individual effects of the particle and gaseous contaminants on plants’ general physiology can be detrimental. According to research, plant leaves, the primary receptors of PM pollution, can function as biological filters to remove significant amounts of particles from the atmosphere of urban areas. This study showed that vegetation could provide a promising green infrastructure (GI) for better air quality through the canopy and leaf-level processes, going beyond its traditional role as a passive target and sink for air pollutants. Opportunities exist for urban GI as a natural remedy for urban pollution caused by PMs

    Accumulation of Plastics and Trace Elements in the Mangrove Forests of Bima City Bay, Indonesia

    No full text
    Pollution with microplastics (MPs), nanoplastics (NPs) and trace elements (TEs) remains a considerable threat for mangrove biomes due to their capability to capture pollutants suspended in the water. This study investigated the abundance and composition of plastics and TEs contained in the soil and pneumatophores of Avicennia alba sampled in experimental areas (hotel, market, river mouth, port, and rural areas) differentiated in anthropopressure, located in Bima Bay, Indonesia. Polymers were extracted and analyzed with the use of a modified sediment isolation method and Fourier transform infrared spectroscopy. Trace elements were detected by inductively coupled plasma optical emission spectrometry. The lowest and highest quantities of MPs in soil were recorded in rural and hotel areas, respectively. The rural site was characterized by distinct MP composition. The amounts of sediment-trapped MPs in the tested localities should be considered as high, and the recognized polymers partly corresponded with local human activity. Concentrations of seven plastic types found in plant tissues did not entirely reflect sediment pollution with nine types, suggesting a selective accumulation (particularly of polyamides and vinylidene chloride) and substance migration from other areas. Very low concentrations of non-biogenic TEs were observed, both in sediments and pneumatophores. The results highlight the relevance of environmental contamination with plastics

    Research on the Positioning Performance of GNSS with a Low-Cost Choke Ring Antenna

    No full text
    One of the technologies used for localization is GNSS (Global Navigation Satellite Systems), which is exposed to many phenomena, i.e., the occurrence of terrain covers, reflections of the radio waves, and the multipath nature of the radio waves in the propagation environment. To increase the resistance to environmental phenomena, special types of antennas are used, which include, among others, choke ring antennas. The article describes the design and construction of the choke ring antenna and the impact of the mentioned device on the quality of GNSS positioning. The accuracy of the constructed antenna (based on selected accuracy measures: DRMS, 2DRMS, SEP, MRSE, SAE) is calculated together with positioning errors determined for two types of antennas: choke ring antenna and the dedicated antenna supplied by the manufacturer in RTK mode. The results confirm that the designed choke ring antenna can be used for positioning without significantly losing accuracy in the RTK mode

    Not Only Trees Matter—Traffic-Related PM Accumulation by Vegetation of Urban Forests

    No full text
    In terms of the process of air purification, a lot of attention has been devoted to trees and shrubs. Little attention has been paid to herbaceous vegetation from the lower forest layers. Urban forests are often located on the outskirts of cities and surround exit roads where there is heavy traffic, generating particulate matter (PM) pollution. The aim of this study was to investigate the spread of PM from the road traffic in the air and to investigate how individual layers of urban forests accumulate PM. We conducted comparative analyses of PM accumulation on plants in five zones away from the road, into the forest, in the air, and in four vegetation layers: mosses, herbaceous plants, shrubs and trees. The results show that all forest layers accumulate PM. We show that PM is very efficiently accumulated by herbaceous plants growing along roadsides, and that the PM that was not deposited on herbaceous plants was accumulated by trees and shrubs. With increasing distance from the road into the forest, the PM content on herbaceous plants decreased and the accumulation on trees and shrubs increased. We estimated that PM concentration in the air dropped significantly in the front line of the trees, but it was still detectable up to 50 m into the forest. The results presented herein show that meadow vegetation and urban forests play a very important role in air purification. Our results provide a better understanding of the complexity of urban forest interactions and provide the basis for better planning of urban greenery

    The Role of Plant–Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants

    No full text
    Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant–microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented
    corecore