15 research outputs found
On the (Non)-Integrability of KdV Hierarchy with Self-consistent Sources
Non-holonomic deformations of integrable equations of the KdV hierarchy are
studied by using the expansions over the so-called "squared solutions" (squared
eigenfunctions). Such deformations are equivalent to perturbed models with
external (self-consistent) sources. In this regard, the KdV6 equation is viewed
as a special perturbation of KdV equation. Applying expansions over the
symplectic basis of squared eigenfunctions, the integrability properties of the
KdV hierarchy with generic self-consistent sources are analyzed. This allows
one to formulate a set of conditions on the perturbation terms that preserve
the integrability. The perturbation corrections to the scattering data and to
the corresponding action-angle variables are studied. The analysis shows that
although many nontrivial solutions of KdV equations with generic
self-consistent sources can be obtained by the Inverse Scattering Transform
(IST), there are solutions that, in principle, can not be obtained via IST.
Examples are considered showing the complete integrability of KdV6 with
perturbations that preserve the eigenvalues time-independent. In another type
of examples the soliton solutions of the perturbed equations are presented
where the perturbed eigenvalue depends explicitly on time. Such equations,
however in general, are not completely integrable.Comment: 16 pages, no figures, LaTe