788 research outputs found

    Satirical News Detection and Analysis using Attention Mechanism and Linguistic Features

    Full text link
    Satirical news is considered to be entertainment, but it is potentially deceptive and harmful. Despite the embedded genre in the article, not everyone can recognize the satirical cues and therefore believe the news as true news. We observe that satirical cues are often reflected in certain paragraphs rather than the whole document. Existing works only consider document-level features to detect the satire, which could be limited. We consider paragraph-level linguistic features to unveil the satire by incorporating neural network and attention mechanism. We investigate the difference between paragraph-level features and document-level features, and analyze them on a large satirical news dataset. The evaluation shows that the proposed model detects satirical news effectively and reveals what features are important at which level.Comment: EMNLP 2017, 11 page

    The Looming Threat of Fake and LLM-generated LinkedIn Profiles: Challenges and Opportunities for Detection and Prevention

    Full text link
    In this paper, we present a novel method for detecting fake and Large Language Model (LLM)-generated profiles in the LinkedIn Online Social Network immediately upon registration and before establishing connections. Early fake profile identification is crucial to maintaining the platform's integrity since it prevents imposters from acquiring the private and sensitive information of legitimate users and from gaining an opportunity to increase their credibility for future phishing and scamming activities. This work uses textual information provided in LinkedIn profiles and introduces the Section and Subsection Tag Embedding (SSTE) method to enhance the discriminative characteristics of these data for distinguishing between legitimate profiles and those created by imposters manually or by using an LLM. Additionally, the dearth of a large publicly available LinkedIn dataset motivated us to collect 3600 LinkedIn profiles for our research. We will release our dataset publicly for research purposes. This is, to the best of our knowledge, the first large publicly available LinkedIn dataset for fake LinkedIn account detection. Within our paradigm, we assess static and contextualized word embeddings, including GloVe, Flair, BERT, and RoBERTa. We show that the suggested method can distinguish between legitimate and fake profiles with an accuracy of about 95% across all word embeddings. In addition, we show that SSTE has a promising accuracy for identifying LLM-generated profiles, despite the fact that no LLM-generated profiles were employed during the training phase, and can achieve an accuracy of approximately 90% when only 20 LLM-generated profiles are added to the training set. It is a significant finding since the proliferation of several LLMs in the near future makes it extremely challenging to design a single system that can identify profiles created with various LLMs.Comment: 33rd ACM Conference on Hypertext and Social Media (HT '23

    Deception Detection with Feature-Augmentation by soft Domain Transfer

    Full text link
    In this era of information explosion, deceivers use different domains or mediums of information to exploit the users, such as News, Emails, and Tweets. Although numerous research has been done to detect deception in all these domains, information shortage in a new event necessitates these domains to associate with each other to battle deception. To form this association, we propose a feature augmentation method by harnessing the intermediate layer representation of neural models. Our approaches provide an improvement over the self-domain baseline models by up to 6.60%. We find Tweets to be the most helpful information provider for Fake News and Phishing Email detection, whereas News helps most in Tweet Rumor detection. Our analysis provides a useful insight for domain knowledge transfer which can help build a stronger deception detection system than the existing literature

    Search Rank Fraud De-Anonymization in Online Systems

    Full text link
    We introduce the fraud de-anonymization problem, that goes beyond fraud detection, to unmask the human masterminds responsible for posting search rank fraud in online systems. We collect and study search rank fraud data from Upwork, and survey the capabilities and behaviors of 58 search rank fraudsters recruited from 6 crowdsourcing sites. We propose Dolos, a fraud de-anonymization system that leverages traits and behaviors extracted from these studies, to attribute detected fraud to crowdsourcing site fraudsters, thus to real identities and bank accounts. We introduce MCDense, a min-cut dense component detection algorithm to uncover groups of user accounts controlled by different fraudsters, and leverage stylometry and deep learning to attribute them to crowdsourcing site profiles. Dolos correctly identified the owners of 95% of fraudster-controlled communities, and uncovered fraudsters who promoted as many as 97.5% of fraud apps we collected from Google Play. When evaluated on 13,087 apps (820,760 reviews), which we monitored over more than 6 months, Dolos identified 1,056 apps with suspicious reviewer groups. We report orthogonal evidence of their fraud, including fraud duplicates and fraud re-posts.Comment: The 29Th ACM Conference on Hypertext and Social Media, July 201
    • …
    corecore