14 research outputs found

    Antibody epitope mapping.

    Full text link
    <p>To determine the more exact antibody-binding epitope single alanine amino acid substitutions were introduced in the E1E2 sequence from isolate H77 and antibody binding was tested by ELISA. E1E2 containing cell lysates were incubated on GN lectin pre-coated wells before adding an antibody (1 to 0.0002 μg/mL). Antibody concentrations needed to get 50% binding (EC<sub>50</sub>) was determined using non-linear regression analysis. The relative binding was calculated by dividing the EC<sub>50</sub> obtained on wild-type protein versus alanine-mutant protein times 100. The gray scale indicates the relative binding level: Black 0% -25%, grey 25% -50% and white 50% -150%. The E2 mutants (rows) were designated X123Y where 123 is the residue position, X indicates the wild-type amino acid residue in H77 and Y indicates the replacing amino acid. The EC<sub>50</sub> which could not be calculated because of very weak binding were indicated by <10%. The data are the mean values of two experiments performed in duplicate.</p

    Antibodies compete CD81 binding to E2.

    Full text link
    <p>Cells transfected E1E2 from isolate H77 were pre-incubated with different concentrations of the indicated antibodies before CD81-LEL at 0.05 μg/mL was added. (A) D25 was used as isotype negative control. The y-axis indicates the percentage inhibition of CD81 and the errors bars represent one SD. (B) Antibody concentration to reach 50% inhibition of CD81 binding (IC<sub>50</sub>) in μg/mL. The IC<sub>50</sub> was determined using non-linear regression analysis. The assay was performed in duplicate and at least repeated once.</p

    Breadth of cross-reactive antibodies against E1E2 glycoproteins.

    Full text link
    <p>Antibodies were tested for binding to E1E2 protein derived from different genotypes by ELISA. E1E2 containing cell lysates were incubated on GNA pre-coated wells before antibodies were added at 1 μg/mL. A lysate from non-transfected cells and the RSV F protein specific antibody D25 were used as negative controls. The y-axis indicates the mean optical density (OD) at 450 nm and the errors bars represent one standard deviation (SD). E1E2 sequences are indicated between brackets and assays were performed in duplicate.</p

    Antibodies recognize non-linear epitopes on soluble E2.

    Full text link
    <p>(A) Antibody binding to denatured E1E2 was tested by ELISA. A cell lysate of 293T cells transfected with E1E2 (H77) was treated with 20 mM Dithiothreitol and 0.4% Sodium dodecyl sulfate (denatured E1E2) or directly added on GNA pre-coated plate (native E1E2). Subsequently the antibodies were added at 1 μg/mL. A lysate of non-transfected cells, a native E1E2 cell lysate, AP33 an antibody specific for a linear epitope on E2 and D25 were used as negative and positive controls. (B) The binding of antibodies to H77 derived E2 was tested by ELISA. The antibodies (1 μg/mL) were added to wells pre-coated with His6 tagged E2 (E2-his). Phosphate buffered saline (PBS) coated wells and D25 were used as negative controls. In A) and B) the y-axis indicates the mean Optical density (OD) at 450nm and the errors bars represent one SD. The assay was performed in duplicate wells and repeated in at least one separated experiment.</p

    Antibody competition.

    Full text link
    <p>(A) Antibody competition assay was performed by SPR using H77 derived E2-his. When the antibodies (indicated in rows) were immobilized on the chip and had captured E2, a second antibody (indicated in columns) was injected. Absence of binding after injection of the second antibody indicated the antibodies competed for E2 binding (grey); if the injected antibody bound antibody-captured E2, this was considered to be not competing (white). The assay was performed in triplicate and repeat in one separated experiment. (B) Antibody competition assay was performed by flow cytometry using cells transfected with E1E2 from isolate H77. Cells were pre-incubated with 20 μg/mL of the indicated antibodies before Alexa Fluor 647 conjugated antibodies at their EC<sub>50</sub> were added. The percentage of binding was calculated using the percentage of Alexa Fluor 647 positive cells from wells incubated without antibodies. The gray scale indicates the relative binding level: white 100% -75%, light grey 75% -50%, dark grey 50% -25% and black 25%–0%. D25 was used as isotype negative control. The mean value of three duplicate experiments is shown.</p

    SdgB glycosylation protects SDR proteins from cleavage by human neutrophil-derived cathepsin G.

    Full text link
    <p>(<b>A</b>) Live, in tact WT or Δ<i>sdgB</i> USA300 bacteria were incubated in the presence or absence of human neutrophil lysosomal extracts (NLE). Culture supernatants were immunoblotted with a mAb against the A-domain of ClfA (9E10) to detect cleaved ClfA fragments released from the bacteria. (<b>B</b>) Live, in tact WT or Δ<i>sdgB</i> cells were incubated in the presence or absence of lysosomal extracts from human THP1 cells or mouse RAW cells and culture supernatants were immunoblotted with anti-ClfA. (<b>C</b>) Live, intact WT or Δ<i>sdgB</i> cells were incubated with a panel of purified human neutrophil serine proteases, ie. neutrophil elastase (NE), cathepsin G (CatG), proteinase-3 (P3), and neutrophil serine protease-4 (NSP4). (<b>D</b>) <b>Δ</b><i>sdgB</i> cells were treated with human neutrophil lysosomal extract in the presence or absence of a biochemical inhibitor of cathepsin G. (<b>E</b>) WT or various Sdg-mutant strains were treated with purified human cathepsin G. (<b>B-E</b>) Culture supernatants were analyzed by immunoblotting as in (A) to detect released ClfA fragments. (<b>F</b>) Live bacteria of WT, <b>Δ</b><i>sdgB</i>, or Δ<i>sdgB</i> complemented with exogenous SdgB (p<i>sdgB</i>) were treated with purified human cathepsin G. Culture supernatants (Sup) or cell wall preparations (CWP) were immunoblotted with mAb against the A-domain of ClfA (S4675), SdrD (17H4), or IsdA (2D3). In addition to S4675, another mAb against the A-domain of ClfA (9E10) showed similar results (not shown). (<b>G</b>) Human cathepsin G inhibits adherence of glycosylation-deficient <i>S. aureus</i> to human fibrinogen. Live WT or Δ<i>sdgB</i> USA300 bacteria were pre-incubated with cathepsin G, and allowed to adhere to fibrinogen-precoated plates. Bacterial adhesion was quantified by measuring the amount of bacterial ATP associated with the plates.</p

    Recognition of SdgB-dependent epitope by human antibodies.

    Full text link
    <p>(<b>A</b>) Four different human IgG preparations were reacted with plate-bound CWP from WT or Δ<i>sdgB</i> USA300 by ELISA. To calculate the specific anti-staphylococcal IgG content, data were normalized using a calibration curve with known IgG concentrations of a mAb against peptidoglycan, which has the same reactivity with both USA300 strains by ELISA. Data are expressed as µg/mL of anti-staphylococcal IgG in the serum. The reduction in reactivity observed for CWP from Δ<i>sdgB</i> (red bars) as compared to wild-type CWP (black bars) reflects IgG specific for SdgB-dependent epitopes. Asterisks indicate significant differences (p < 0.05) from WT CWP. (<b>B</b>) CWP from WT, Δ<i>sdgA</i>, or Δ<i>sdgB</i>, Δ<i>sdgAΔsdgB</i> USA300 were immunoblotted with rF1 and three additional human mAbs (SD2, SD3, and SD4) from different patients. All four mAbs showed similar epitope specificity.</p

    mAb rF1 exhibits robust binding to and killing of <i>S. aureus</i> bacteria.

    Full text link
    <p>(<b>A-C</b>) Bacteria were preopsonized with huIgG1 mAbs rF1 (squares), 4675 anti-ClfA (triangles), or anti-herpes virus gD (circles). (<b>A</b>) Binding of mAbs to WT (USA300-Δ<i>spa</i>) bacteria was assessed by flow cytometry, and expressed as mean fluorescent intensity (MFI). (<b>B</b>) CFSE-labeled, preopsonized WT (USA300-Δ<i>spa</i>) bacteria were incubated with human PMN. Bacterial uptake was expressed as % of CFSE-positive PMN, after gating for CD11b-positive cells by flow cytometry. (<b>C</b>) Preopsonized WT (USA300-Δ<i>spa</i>) bacteria were incubated with PMN to assess bacterial killing. Numbers of viable CFU per mL are representative of at least three experiments. (<b>D</b>) Flow cytometry analysis of binding of rF1 to <i>S. aureus</i> from various infected tissues. Homogenized tissues were double stained with mAb rF1 (X-axis), and with anti-peptidoglycan mAb 702 to distinguish bacteria from tissue debris (Y-axis) (left panel; gate indicated by arrow), followed by gating of bacteria to generate histogram figures. (<b>E</b>) Binding of rF1 to various staphylococcal and non-staphylococcal Gram-positive bacterial species by flow cytometry. <i>Red lines</i>, rF1; <i>blue lines</i>, isotype control mAb anti-gD; <i>green lines</i>, control without mAb. (See also <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1003653#ppat.1003653.s001" target="_blank">Figure S1</a>).</p
    corecore